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Single-scattering optical tomography: Simultaneous reconstruction of scattering and absorption
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We report theory and numerical simulations that demonstrate the feasibility of simultaneous reconstruction
of the three-dimensional scattering and absorption coefficients of a mesoscopic system using angularly re-
solved measurements of scattered light. Image reconstruction is based on the inversion of a generalized (broken
ray) Radon transform relating the scattering and absorption coefficients of the medium to angularly resolved
intensity measurements. Although the single-scattering approximation to the radiative transport equation (RTE)
is used to devise the image reconstruction method, there is no assumption that only singly scattered light is
measured. That is, no physical mechanism for separating single-scattered photons from the rest of the multiply-
scattered light (e.g., time gating) is employed in the proposed experiments. Numerical examples of image
reconstruction are obtained using samples of optical depth of up to 3.2. The forward data are obtained from

numerical solution of the RTE, accounting for all orders of scattering.
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I. INTRODUCTION

There is considerable interest in the development of tech-
niques for three-dimensional optical imaging of biological
systems. One application that is particularly appealing is the
study of mesoscopic systems such as engineered tissues and
model organisms, including Drosophila and Zebra fish [1].
For such systems, the photon transport mean free path is on
the same order as the system size [2]. As a consequence,
imaging modalities that assume either ballistic [3-6] or dif-
fuse [7] propagation of light are not suitable. Thus, optical
imaging techniques that bridge the gap between microscopic
and macroscopic scales are of current importance [1].

In Ref. [8], we have proposed an imaging technique that
makes use of angularly selective intensity measurements to
reconstruct the total attenuation coefficient of an inhomoge-
neous medium, assuming that the measured light is predomi-
nantly single-scattered. This technique, which is referred to
as single-scattering optical tomography (SSOT), takes as its
starting point a generalization of the Radon transform in
which the integral of the attenuation coefficient u, along a
broken ray (which corresponds to the path of a single-
scattered photon) is related to the measured intensity. It can
be shown that this relationship may be inverted to recover
the attenuation coefficient of the medium. We have found
that SSOT produces high-quality images even in relatively
thick samples, where the single-scattering approximation is
expected to break down. It is important to emphasize that the
experiments proposed in Ref. [8] do not rely on any physical
mechanism for separating single-scattered photons from the
remainder of the scattered light (such as time gating, for
example) and are, therefore, relatively simple.

In this paper, we generalize our previous results by dem-
onstrating that it is possible to separately recover the scatter-
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ing and absorption coefficients of the medium, u, and u,, by
making use of intensity measurements in two outgoing direc-
tions (u,=u,+ ). Thus, we show that the effects of scatter-
ing can be used to infer additional information about the
medium. Previously, scattering in mesoscopic systems has
been viewed as an obstruction to imaging. Thus, the effects
of scattering are not taken into account and typically result in
image degradation.

This paper is organized as follows. In Sec. II, we briefly
review the theory of SSOT and then specialize to the case of
normal incidence and two-angle detection which is further
explored in detail. In Sec. III, we describe the numerical
procedures we employ and in Sec. IV report our results. Fi-
nally, Sec. V contains concluding remarks.

II. THEORY

Consider a spatially nonuniform medium filling a slab of
width L. Suppose that an incident beam of light of intensity
I, enters the slab at the point r; in the direction §;. An an-
gularly selective detector registers the ray exiting the slab
through the opposite surface at the point r, in the direction §,
(as shown in Fig. 1). The intensity measured in such an ex-
periment is denoted by I,(r,,$,;r,,$;). Note that the back-
scattering measurement geometry can also be employed
without any additional complications.

We assume that scattering is not very strong, that is u,L
=0(1), and that the single-scattering approximation to the
radiative transport equation (RTE) can be adopted. Note,
however, that in the numerical simulations reported below,
the forward data are obtained by solving the RTE without
any approximations, accounting for all orders of scattering.
In the single-scattering approximation, the quantities u, and
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FIG. 1. (Color online) Illustrating the quantities used in Eq. (3)
and elsewhere. “BR” denotes broken ray.

u, are related to the measured light intensity by [8]
1(r,81315,8,) = 1,O(7 — 6, = 0) 8| g, — g | = 7)

> (R )A(S,,81)
91 Sin @, sin 6,

Xexpy — f ulr(€)]de
BR(r).$5;r,81)

(1)

Here, O(x) is the unit step function, A(S$,,$;) is the phase
function, r,,=|r,—r,| is the distance between the source and
the detector, the angles 6, and 6, are defined in Fig. 1 and
the quantities ®s,> g, are the azimuthal angles of vectors
$1,8, with respect to the z axis. Note that the factor
& go§1—qo§2|—77) is nonzero only when the two vectors §;,$,
are in the same plane. This particular case is illustrated in
Fig. 1. The integral in Eq. (1) is evaluated along the broken
ray (denoted “BR”), corresponding to the path of a single-
scattered photon, and R,; is the turning point of this ray.
Equation (1) can be rewritten in the form

P s(Ryy)
(ry,8;:r.8)) = fﬂ]’

s

pdr(€)]dt ~ ln[

BR(ry.$5;rq,81)
(2)

where i, is the reference (background) value of the scatter-
ing coefficient, and the data function ¢(r,,$,;r;,$;) is de-
fined by

ra; sin 6, sin 92f15(1‘2,§2;1'1,§1)d€9§2:|

¢(r2,§2;r1,§]):—ln[ — A A
Tyt A($5,81)

3)

In what follows, we assume that the background scattering
coefficient i, and the phase function A($,$") are known. The
first quantity can be, in principle, selected arbitrarily, but it is
more practical to define it to be the value of the scattering
coefficient in the regions of the sample which are known to
be spatially uniform, or in a homogeneous reference sample.
Determination of the phase function is a less trivial matter.
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The fundamental assumption of SSOT is that A(S,§’) does
not depend on position. This is a good approximation in
many practical situations, e.g., when the variations in u, and
M, are due to variations in the concentration of scattering and
absorbing particles whose shape, however, is on average un-
changed. If this proposition is true, then A($,§’) can be mea-
sured experimentally by varying the angle between the
source and the detector in such a way that the ray turning
point R,; is fixed.

As was mentioned above, the measured intensity in the
single-scattering approximation is nonzero only if the vectors
$, and $, lie in the same plane. This plane is referred to as a
slice and image reconstruction of different slices can be car-
ried out independently. For example, in Fig. 1, the slice co-
incides with the yz-plane of the laboratory frame. To carry
out three-dimensional optical imaging, the medium can be
approximated by a set of parallel slices, say, x=nh, where n
is an integer and % is the interslice separation. Inside each
slice, w, and u, can be regarded as functions of the two
variables y and z. On the other hand, the data is four-
dimensional, depending upon two positions and two direc-
tions. Indeed, the source and the detector can be scanned
independently along the direction of the Y axis. Additionally,
the source and detector orientations can be varied. This pro-
vides four mathematically independent parameters. The only
two restrictions on these parameters are that the ray turning
point be inside the medium and that the source and the de-
tector are never aligned on the same axis. Thus, by utilizing
multiple incident beams and detecting light exiting the me-
dium at different points and by varying the incidence and
exit angles, it is possible to collect sufficient data to recon-
struct the absorption and scattering coefficients in a given
slice.

Moreover, simultaneous reconstruction of scattering and
absorption can be realized without making use of the entire
parameter space. It is sufficient to use one angle of incidence
and two different angles of detection. This measurement
scheme is schematically illustrated in Fig. 2 for the special
case of normal incidence and two measurement angles equal
to = /4. This particular measurement scheme will be now
described in more detail.

Consider a beam normally incident on the sample at the
position (y;,0). Here, all coordinates are in the yz plane.
Suppose that measurements are made by a pair of detectors
the first of which has the position (y,,L) and angle B,
=/4, and the second has position (2y,-y,,L) and angle
Br=—m/4, where the angles 3, and 3, are defined in Fig. 1.
The case of normal incidence corresponds to 8;=0 and we
adopt here a convention according to which the angle 8, can
be either positive or negative, depending on whether the
beam exits the medium above or below the normal. We re-
quire that 0<<y,—y; <L. The two detectors register photons
(rays) that are single-scattered at the same ray turning point
(within the sample) Ry;=(y;,z9), where zo=L—(y,—y,).
Such ray pairs are shown in Fig. 2. If we write an integral
equation of the form (2) for each of the detectors and sub-
tract one of them from the other, we obtain the following
result:
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FIG. 2. (Color online) The proposed experiment geometry for
simultaneous reconstruction of scattering and absorption coeffi-
cients. The rectangles represent the slices in which reconstruction is
performed.

D(yp, m43y1,0) = P2y, — yo,— w4;y,,0)

=J Ly (€),z(€)]de
BR(y,,7/4:y1.0)

_ f wl(0.20%0. @)
BR(2y~y,,~7/4:y1,0)

Here, the integrals of the total attenuation coefficient are
along the two broken rays described above. Equations (2)
and (4) can be solved simultaneously to recover w,(y,z) and
Ms(y,z). The absorption coefficient is then obtained as u,

=My M.
III. NUMERICAL METHODS
In Sec. IV below, we illustrate simultaneous reconstruc-

tion of scattering and absorption in SSOT based on algebraic

(a) Model n=0 n=1% n=3%

(b) Model n=0
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inversion of Egs. (2) and (4). We note that a more sophisti-
cated reconstruction procedure based on an inverse formula
is also possible and will be presented elsewhere.

The forward scattering data is obtained for isotropic scat-
tering (that is, for A(S,,$,)=1/41). Note that this choice
corresponds to the strong-scattering regime and is, therefore,
the most stringent test of the image reconstruction procedure
that is based on the single-scattering approximation. The me-
dium containing predetermined inhomogeneities (targets) is
discretized on a cubic grid with the step size 4 which is also
equal to the interslice separation used in image reconstruc-
tion. The RTE is then solved numerically by the method
described in detail in Ref. [8]. Note that, unlike in Ref. [8],
here, we have accounted for the spatial dependence of the
scattering coefficient. To model noise in the measured data,
the specific intensity that was computed numerically was
scaled and rounded off so that it was represented by 16-bit
unsigned integers, similar to the digital output of a charge-
coupled device (CCD) camera. Then, a statistically indepen-
dent positive-valued random number was added to each mea-
surement. The random numbers were uniformly distributed
in the interval [0,nl,,], where n is the noise level and I, is
the average measured intensity (a 16-bit integer).

The data function is calculated using a discretized version
of Eq. (3) [8]. Reconstruction of the attenuation coefficient is
obtained using Egs. (2) and (4). The discrete analog of Eq.
(4) is

E Evmu'tn: (vbv- (5)

Here, the composite index v=(y;,y,) defines a pair of rays
with the same turning point and £=£"-L£? where the
matrix elements Lg,ln) are given by the length of intersection
of the first ray (the one with B,=m/4) with the n-th cubic
cell of the discretized medium and szzn) is the analogous
quantity for the second ray (the one with B,=—/4). The
quantity u,, is the value of the attenuation coefficient in the
n-th cubic cell. Finally, ¢V=¢(Vl)—qb(f), where ¢>(Vl) and qbs,l)

n=1% n=3%

FIG. 3. Reconstruction of the scattering (left) and absorption (right) coefficients for the sample A for various noise levels n. The rows in
each panel correspond to the slices x=6h, 134, and 20k where the inhomogeneities are placed. Scattering and absorbing inhomogeneities are
present in the sample simultaneously, and in the slices x=6 and x=20, they overlap. The top and bottom panels use different color scales
(since they visualize different quantities) but all plots within the same panel utilize the same color scale.
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(a) Model n=0 n=1% n=3%

(b) Model n=0

PHYSICAL REVIEW E 81, 016602 (2010)

n=1%

FIG. 4. Same as in Fig. 3 but for the sample B.

are the data points corresponding to the first and second rays,
respectively. Equation (5) is solved for u,, using a regular-
ized pseudoinverse [9], namely,

) = (L7L)7' L7 ), (6)

where

(E*ﬁ)_l — 2 @(0_721 _ 6) |fn><ifn| ) (7)

n

Here, € is a small regularization parameter. The quantities
If,) and o, are the singular vectors and singular values, re-
spectively, of the matrix £, obtained by solving the symmet-
ric eigenproblem £*L|g,)=02|g,).

Once u, is computed as described above, u, can be deter-
mined from Eq. (2), discretized as

ws(ny1)
1n|:T21:| = 2 E}Ql‘l’m - ¢(y23 77/4;))]’0)3 (8)

where n,; is the number of voxel containing the turning point
of the ray BR(y,,7/4;y,,0). Finally, the absorption coeffi-
cient is obtained from w,, =, — M-

n=1%

(a) Model n=0 n=3%

(b) Model n=0

IV. RESULTS

We have considered four rectangular samples of dimen-
sions L,=25h, L,=122h, and L,=40h. The absorption and
scattering coefficients of the samples were constant every-
where except for a set of voxels where absorbing and scat-
tering inhomogeneities were placed. All such inclusions were
present only in the slices x=6h, x=13h, and x=20/ and are
shown by a linear color scale in the columns marked as
“Model” in Figs. 3—6 below. In some cases, the absorptive
and scattering inhomogeneities overlapped, that is, the same
voxel had both its absorption and the scattering coefficients
different from the background. The background coefficients
s and i, as well as the maximum contrasts of the inclu-
sions (with respect to the background values) are listed in
Table I.

The results of numerical reconstruction of the scattering
and absorption coefficients for the sample A are shown in
Fig. 3. Only the slices containing inhomogeneities are shown
in the figure. Intermediate slices have also been recon-
structed but appear essentially as black squares and are there-
fore not shown. As can be seen, good image quality is ob-
tained for the scattering coefficient. The reconstructions are
in quantitative agreement with the model and are stable in
the presence of noise. The image quality for the absorption

n=1% n=3%

FIG. 5. Same as in Fig. 3 but for Sample C.
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(a) Model n=0

n=1%
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(b) Model n=0 n=1% n=3%

FIG. 6. Same as in Fig. 3 but for Sample D.

coefficient is markedly worse and stronger influenced by
noise. However, most of the features of the model can be
recognized.

We next consider the sample B in which the strength of all
scattering inhomogeneities is increased by a factor of 1.5,
while all other parameters remain the same as in sample A.
The results are presented in Fig. 4. Again, a much better
image quality is obtained for the scattering than for the ab-
sorption coefficient. It can be seen that reconstruction of the
absorption coefficient is much more sensitive to noise. This
fact is more pronounced in samples with stronger scattering
(relative to absorption). This can be explained by noting that
M, 1s determined in SSOT by numerically subtracting two
relatively large quantities (u, and w,) both of which are af-
fected by numerical errors and noise. Consistent with this
point, reconstruction of u, is more robust when absorbing
and scattering inhomogeneities do not overlap, as can be
seen from the figures.

To confirm the above conclusion, we have considered
sample C, which is strongly absorbing. All parameters of
sample C are the same as in sample B, except that the ab-
sorption coefficient was increased uniformly by a factor of
10 (including the absorbing inhomogeneities). The results are
shown in Fig. 5. Indeed, it can be seen that image quality for
the absorption coefficient in sample C is markedly better
than in samples A and B and is approximately the same as
for the scattering coefficient.

Finally, we have considered sample D whose ratio of
&,/ [ is the same as in sample C (that is, equal to 1) but the

TABLE I. Optical properties of the samples used in numerical
simulations. The quantities shown are the ratio of the background
absorption and scattering coefficients, the optical depth, and the
minimum and maximum contrasts of the scattering and absorption
coefficients in the inclusions relative to the respective values in the
background.

Sample Mo/ is Loy g/ g, min/max e,/ i, min/ max
A 0.1 1.6 1.33/2 2/5
B 0.1 1.6 2/3 2/5
C 1.0 1.6 2/3 2/5
D 1.0 32 2/3 2/5

optical depth is twice larger, namely, u,L,=3.2. This is a
borderline case where scattering is sufficiently strong so that
the single-scattering approximation may be expected to
break down. The results of image reconstruction for this
sample are shown in Fig. 6. It is remarkable that even when
the optical depth is significantly larger than unity, some fea-
tures in the model remain visible in the reconstruction. Note
that for the noise level n=3%, reconstruction of the scatter-
ing coefficient is almost entirely blurred while the recon-
struction of the absorption coefficient still resembles the
model. Thus, in samples with comparable scattering and ab-
sorption but relatively large optical depth, reconstruction of
the absorption coefficient is more robust at high levels of
noise.

V. CONCLUSIONS

We have demonstrated that single-scattering optical to-
mography allows for simultaneous reconstruction of the scat-
tering and absorption coefficients of mesoscopic systems. We
have found that in systems where scattering dominates ab-
sorption, quantitative imagine reconstruction of scattering is
possible while reconstruction of absorption is much less ro-
bust. Simultaneous reconstruction of both coefficients with
the same quality can be realized under the condition that
scattering and absorption have comparable strengths. This
can be experimentally achieved by appropriately choosing
the wavelength of the illuminating beam, such that the ef-
fects of absorption and scattering have comparable strengths
[10]. Further, if the scattering and absorption in the sample
are, in fact, of comparable strength, we have found the fol-
lowing: reconstruction of the two coefficients is approxi-
mately of the same quality in samples whose optical depth is
=1. In samples of larger optical depth, such as the one con-
sidered in Fig. 6, reconstruction of the absorption coefficient
is more robust at the levels of noise n=1%. Reconstruction
of samples with optical depth larger than 6 (reconstructions
for this optical depth have been demonstrated in Ref. [8]) is
not possible since multiple scattering in such systems is suf-
ficiently strong to render the single-scattering approximation
inapplicable.

We note that the use of point measurements is not essen-
tial for the experimental realization of SSOT. A wide-field
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instrument could, in principle, be constructed wherein a lens-
coupled CCD camera is used as a detector and a scanned
beam is employed for illumination. Such an arrangement is
reciprocal to the experiment proposed in Fig. 1 and would
require that the illuminating beam is oriented at a fixed angle
with respect to the plane of detection. The primary advantage
of this approach is that it would result in significantly re-
duced data acquisition time.

Finally, we note that the distinct feature of SSOT is that it
takes advantage of the salutary effects of scattering. This
allows for an increase in the dimensionality of the parameter
space on which the data function depends and thereby per-
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mits the simultaneous reconstruction of two coefficients in
the RTE. By comparison, such simultaneous reconstruction
is not possible in conventional Radon transform-based imag-
ing modalities such as x-ray computed tomography.
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