
Comment on the use of the method of images for calculating electromagnetic responses
of interacting spheres

Vadim A. Markel
Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

�Received 5 January 2005; published 11 August 2005�

In this Comment, I argue that the method of images used by Huang, Yu, and Gu �Phys Rev. E 65, 021401
�2002�� and Huang, Karttunen, Yu, Dong, and Gu �Phys Rev. E., 69, 051402 �2004�� to calculate electromag-
netic properties of interacting spheres at finite frequencies is inapplicable and does not provide a physically
meaningful approximation.
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Recently, Huang, Yu, Gu �1� �referred to as HYG below�
and Huang et al. �2� have applied the method of images to
study theoretically the electromagnetic properties of two in-
teracting spherical particles. As is well known, the method of
images can be applied to spherical conductors in the electro-
static limit, i.e., when the dielectric constant � can be for-
mally set to i� and the Bergman-Milton spectral parameter
s=1/ ��−1� is equal to zero. At finite frequencies, when s is
not small compared to the generalized depolarization factors
sn, the method of images is not applicable. However, HYG
apply the method to dielectric particles at arbitrary frequen-
cies, assuming only that the size of the two-sphere dimer is
much smaller than the external wavelength. In particular,
they claim to be able to extract the factors sn and the corre-
sponding oscillator strengths Fn, which characterize the elec-
tromagnetic response of a system within the quasistatics. In
the first paper of the series �3� and in Ref. �1� the authors
mention that their method is approximate. However, in the
more recent paper �2� it is presented as exact and used with-
out restriction. In the present Comment, I show that it is
impossible to calculate the quantities sn and Fn using the
method of images. Moreover, the expressions for sn and Fn
given by HYG are not consistent with the exact electrostatic
solution. Thus, the mathematical formalism developed by
HYG is not only not exact, but does not provide a physically
meaningful and controllable approximation.

We start with a brief review of mathematical formalism
used by HYG. Within the quasistatics, dipole moment
of an arbitrary particle characterized by the dielectric func-
tion ���� and excited by a homogeneous external field
E0 exp�−i�t� can be written as d exp�−i�t�, where d= �̂E0.
Here �̂ is the polarizability tensor. If polarization of the ex-
ternal field coincides with one of the principal axes of �̂,
both vectors d and E0 become collinear. The corresponding
scalar polarizability can be written in the Bergman-Milton
spectral representation �4� as

� =
v

4�
�

n

Fn

s + sn
, �1�

where v is the volume of the particle, sn are the generalized
depolarization factors satisfying 0�sn�1; and Fn are the
corresponding oscillator strengths.

In the case of two spheres, one principal axis of the po-
larizability tensor coincides with the axis of symmetry and
the other two axes are perpendicular to the first one and to
each other, but otherwise arbitrary. HYG consider two inter-
acting spheres of the radius R each separated by the center-
to-center distance 2L, obtain the diagonal elements of the
polarizability tensor, and derive the following expressions
for Fn and sn:

Fn
�L� = Fn

�T� = Fn = 4n�n + 1�sinh3 a exp�− �2n + 1�a� , �2�

sn
�L� = 1

3 �1 − 2 exp�− �2n + 1�a�� , �3�

sn
�T� = 1

3 �1 + exp�− �2n + 1�a�� ,

n = 1,2,3, . . . , �4�

where the upper index �L� denotes longitudinal modes, �T�
denotes transverse modes, and a is the solution to cosh a
=L /R, or, explicitly, a=ln�L /R+��L /R�2−1� �5�. It can be
verified that Fn satisfy the sum rule �nFn=1.

Everywhere below we consider only the longitudinal
modes, although the results of HYG for the transverse modes
are also incorrect. The longitudinal modes are more impor-
tant physically, since they are known to produce extremely
high field enhancements in axially symmetrical arrays of
nanospheres �6� and have been extensively studied in con-
junction with the single-molecule spectroscopy �7�.

First, let us discuss the small-frequency limit for conduc-
tors. In this limit, the dielectric function can be written as
�=4�i� /�, where � is the static conductivity. Correspond-
ingly, s	�→0, and we can expand � into a power series in
s. The expansion can be obtained from �1� and reads

� =
v

4�
�
k=0

�

Aks
k, �5�

Ak = �
n

Fn/sn
k+1. �6�

The electrostatic polarizability is given by �es= �v /4��A0.
The method of images can provide an exact expression for
�es and, correspondingly, for A0. However, since there is an
infinite number of different sets of Fn ,sn that produce the
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same value of A0, it is impossible to find these coefficients
from the electrostatic solution. We emphasize that this is not
possible even if one considers the intersphere separation as
an additional degree of freedom, since all quantities �Ak, Fn,
and sn� depend parametrically on L /R. Instead, if the sum-
mation in the right-hand side of �6� is truncated at n=N, one
needs to calculate all coefficients Ak from k=0 to k=2N−1
in order to make the system of Eqs. �6� sufficiently deter-
mined. But the electrostatic solution based on the method of
images can provide only one of these coefficients, namely,
A0.

Although one cannot expect that the set of Fn ,sn given by
HYG �2� and �3� would produce, on substitution into �6�, the
correct expansion coefficients Ak for k
0, it is still possible
that the value of A0 obtained in this manner is correct. How-
ever, as is demonstrated in Fig. 1, this is not so. In this figure,
we plot the function A0�L /R�−A0��� �for conducting
spheres, A0���=3� calculated by different methods. The
mathematically rigorous result is shown by the solid curve,
and the result of HYG by the long dash. We also show in this
figure two analytical asymptotes valid for L�R �shorter
dash� and L→R �dots�. The different curves in Fig. 1 are
explained below in more detail. At this point, we note that
the result of HYG for A0�L /R� is accurate at large separa-
tions �L�R�, but breaks down when L /R	1.2 and becomes
grossly inaccurate at L /R	1.03. In particular, the HYG
curve has a singularity at L /R=xc
�22/3+1� /24/3	1.026.
This is because the first depolarization factor s1 defined by
�3� crosses zero when L /R=xc. The appearance of negative
depolarization factors for smaller intersphere separations is
unphysical and can, in particular, result in divergence of the
electrostatic polarizability �8�.

In the next two paragraphs I explain how the data for
different curves shown in Fig. 1 were calculated. The solid
curve was obtained by diagonalization of the electromagnetic
interaction operator W whose matrix elements are given �9�
by

Wil,i�l� =
l�ll��ii�

2l + 1
+ �1 − �ii���− 1�l��sgn�zi − zi���

l+l�


� ll�

�2l + 1��2l� + 1�
�l + l��!

�L/R�l+l�+1l!l�!
, �7�

where i , i�=1,2 label the spheres, l , l�=1,2 , . . . and zi is the z
coordinate of the center of ith sphere, assuming the z axis

coincides with the axis of symmetry. The depolarization fac-
tors sn are the eigenvalues of W, whereas the oscillator
strengths can be found as squared projections of the corre-
sponding eigenvectors �n� on the vector of external field:
Fn= 
E �n�
n �E�, where �E� is normalized so that 
E �E�=1
�8�. The matrix defined in �7� was truncated so that l , l�
� lmax=1000 and diagonalized numerically. In the absence of
round-off errors and in the limit lmax→�, such diagonaliza-
tion would produce the infinite set of exact values sn, Fn. We
note that at lmax=1000 and L /R�1.01, all the modes whose
oscillator strength are not very small �i.e., greater than 0.001�
have converged with a very high precision, and that the
round-off errors do not influence the results in any noticeable
way since the matrix W is well conditioned.

The dots and short dash in Fig. 1 show the theoretical
asymptotes obtained by Mazets, who has derived an expres-
sion for A0 in terms of hypergeometrical functions �10�. He
has also provided simple asymptotic expansions, which are
valid for small and large intersphere separations. Thus, for
longitudinal excitations,

A0 	 3�2��3� −
�2�2�

C + ln�2/��L/R�2 − 1�
� ,

L → R , �8�

A0 	 3�1 +
1

4
�R

L
�3

+
1

16
�R

L
�6� ,

L � R , �9�

where ��x� is the Riemann zeta-function and C is the Euler
constant. The second term in the right-hand side of �9� is a
correction due to the dipole-dipole interaction while the third
term describe the next nonvanishing input due to the higher
multipole interaction. It can be verified that the asymptotic
expansion of the HYG result coincides with �9� at least up to
the sixth order in L /R. However, the small-separation as-
ymptote �8� is dramatically different from the one that fol-
lows from the HYG formulas.

Next, we compare the coefficients sn, Fn defined by �2�
and �3� according to HYG with respective values obtained by
direct diagonalization of the interaction matrix W. The re-
sults are shown in Fig. 2. A significant discrepancy already
exists at L /R=1.2 and becomes more dramatic as this ratio
approaches unity. Negative depolarization factors are present
in the plot for L /R=1.01. We note that the smallest inter-
sphere separation considered by HYG was L /R=1+1/30
	1.033. As was mentioned above, the negative depolariza-
tion factors appear for L /R�xc	1.026. At these separa-
tions, results of any calculation based on the HYG formalism
are expected to be grossly inaccurate and unphysical. How-
ever, this fact is not explained in Refs. �1,2�. For example,
the choice of values for L /R in Fig. 5 of Ref. �1� appears to
be random, while, in fact, all these values satisfy the critical
condition L /R
xc.

Although it is demonstrated in Fig. 2 that the values of sn,
Fn calculated according to HYG are inaccurate, these coeffi-
cients are not directly measurable in an experiment. How-

FIG. 1. A0�L /R�−A0��� as a function of the relative separation
L /R calculated by different methods.
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ever, they can be used to calculate various physically mea-
surable quantities. For example, the extinction cross section
is given by �e=4�kv Im �nFn / �s+sn�. In Fig. 3 we plot the
extinction spectra of two silver nanoparticles obtained for the
same intersphere separations as in Fig. 2 and for the longi-
tudinal polarization of the external field. Interpolated data for
silver from Ref. �11� have been used to calculate the spectral
parameter s as a function of wavelength. It can be seen that
the spectra calculated using the formulas �2� and �3�, for sn,
Fn differ dramatically from those calculated with the use of
exact values of these coefficients. The discrepancy is evident
even at relatively large separation, L /R=1.2. It should be
noted that in the case L /R=1.01, the HYG spectra exhibit
unlimited growth with the wavelength, which starts in the
near-IR region �data not shown�. This is due to the appear-
ance of negative depolarization factors and contradicts the
general sum rules for extinction spectra, which imply that �e
must decrease faster than 1/� in the limit �→� �8�. Note
that the presence of negative depolarization factors can result
in even more severe anomalies of extinction spectra in di-

electrics whose static dielectric permeability is positive, as
well as the value of s in the limit �→�.

The papers �1,2� contain a number of other less significant
inaccuracies. In particular, HYG confuse orientational aver-
aging �for randomly oriented bispheres� with the averaging
over polarization of the incident light. Thus, for example, Eq.
�2� in Ref. �1� is presented as a result of averaging over
polarization for a fixed bisphere. However, such averaging
should clearly depend on the direction of the incident wave
vector relative to the axis of symmetry of the bisphere. In
fact, the first equality in this formula gives the result of ori-
entational averaging, except that HYG are mistaken in stat-
ing that 
cos2 ��= 
sin2 ��=1/2. It is easy to check that

cos2 ��=1/3 and 
sin2 ��=2/3. Note that the second equal-
ity in Eq. �2� of Ref. �1� would be correct if the averaging is

FIG. 2. Bergman-Milton depolarization factors, sn, and the cor-
responding oscillator strengths Fn for different relative intersphere
separations L /R. Dashed lines are plotted to guide the eye.

FIG. 3. Dimensionless extinction parameter �=�e /kv as a func-
tion of wavelength �, where �e is the extinction cross section, k
=2� /�, v is the total volume of the scatterer, plotted for different
relative intersphere separations L /R. Polarization of the incident
field is parallel to the axis of symmetry.
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done over polarizations of the incident beam for a fixed bi-
sphere, assuming that the incident wave vector is perpen-
dicular to the axis of symmetry.

It should be noted that on p. 4 of Ref. �1�, the authors
acknowledge that the method of images is only approximate,
but state that the approximation is very good and make a
reference to the earlier work �3� to support that statement.
However, in Ref. �3� verification of accuracy of the method
of images is only done for relatively large separations,
namely, L /R�1.5 �Figs. 3 and 4 in Ref. �3��. At these sepa-
rations, the multipole effects are generally not important,

which clearly follows from the data shown in these figures.
However, in later publications, HYG have used the method
for much smaller separations, typically, L /R=1+1/30.

Finally, also on p. 4 of Ref. �1�, the authors write: “More
accurate calculations based on bispherical coordinates can be
attempted.” This was, in fact, done in the above-referenced
paper by Mazets �10�, although only for perfect conductors.
More general analytical results can be obtained with the use
of the theory of hypercomplex variables �a generalization of
the conformal mapping� �12�.
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