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Numerical studies of second- and fourth-order correlation functions in cluster-cluster aggregates
in application to optical scattering
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Two- and four-point density correlation functionsp2(r ) andp4(r ) are studied numerically and theoretically
in computer-generated three-dimensional lattice cluster-cluster aggregates~CCA! with the number of particles
N up to 20 000 in application to the light scattering problem. The ‘‘pure’’ aggregation algorithm is used, where
subclusters of all possible sizes are allowed to collide. We find that large CCA clusters demonstrate pro-
nounced multiscaling. In particular, the fractal dimension determined from the slope ofp2(r ) at small distances
differs from that found from the dependence of the radius of gyration on the number of monomers~according
to our data, 1.80 and 1.94, respectively!. We also consider different functional forms forp2 and their general
properties and applicability. We find that the best fit to the numerical data is provided by the generalized
exponential cutoff function with coefficients depending onN. The latter dependence is a manifestation of
multiscaling. We propose some theoretical approaches for calculatingp4(r ), assumingp2(r ) is known. In
particular, we find the small-r asymptote for thep4(r ) and verify it numerically. In addition, we find that
p4(r ) cannot be represented by a scaling dependence with a cutoff function, likep2(r ). Instead,p4(r ) is given
by an expansion in terms of integer powers ofr 2D23, whereD is the fractal dimension ('1.8 for CCA
clusters!. @S1063-651X~97!14906-6#

PACS number~s!: 61.43.Hv, 71.45.Gm, 42.25.Fx
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I. INTRODUCTION

Computer algorithms play a very important role in und
standing aggregation phenomena and physical propertie
aggregates. In many instances, computer simulation is
only feasible theoretical approach to very complex stocha
aggregation processes, when traditional techniques of st
tical mechanics cannot be applied due to strong fluctuat
and the absence of equilibrium. These algorithms have
tracted much attention since Witten and Sander@1#, Meakin
@2#, and Kolb, Botet, and Jullien@3# proposed realistic algo
rithms which simulate natural aggregation processes to m
detail.

One of the most extensively used applications
computer-generated clusters is the study of density corr
tion functions. A direct experimental measurement of th
functions has also been carried out~see, for example, Ref
@4#!, but such experiments face considerable difficulti
First, it is hard to calculate interparticle distances from tw
dimensional electron micrograph images of thre
dimensional clusters@4#, and, second, the process of electr
micrographing itself can damage the cluster structure.

Density correlation functions provide important geome
cal characteristics of clusters, carrying valuable physical
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formation. Correlation functions are especially useful in o
tics @4–8#. The two-point correlation function describes th
average intensity of light scattered by an ensemble of c
ters @5#, while the four-point correlation function govern
fluctuations in the scattered light@8#.

In the present paper we study the two- and four-po
correlation functions in aggregates obtained by the numer
algorithm known as the cluster-cluster aggregation~CCA!
@2,3,9–11#. The CCA algorithm provides a very accura
simulation of aggregation processes which occur in natu
under the conditions that there is no spatially fixed cente
aggregation and the concentration of aggregating materi
sufficiently low. These conditions are well satisfied, for e
ample, for formation of fractal carbone soot@5# and metallic
colloids @12#. One of the possible applications of the resu
obtained in this paper is a theoretical description of lig
scattering from fractal soot clusters in the atmosphere.

In its most pure form, the CCA algorithm involves th
following steps: First, a set ofN pointlike particles are ran-
domly placed on a simple cubic lattice of the si
L3L3L. The size of the lattice is chosen so that the aver
density of particles,N/L3, is much smaller than unity. Thos
particles which are separated by only one lattice unit
considered to be rigidly bound to each other and form
subcluster. Ideally, in the limit of zero density, there a
initially N subclusters consisting of one particle each. The
subcluster is picked randomly out of the set and moved
lattice unit in one of the six possible directions, chosen
random. If, after this move, the subcluster contacts ot
cluster~s! ~via nearest-neighbor occupancy!, these subclusters
stick together to form a larger subcluster. The steps areia.
7313 © 1997 The American Physical Society
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7314 55MARKEL, SHALAEV, POLIAKOV, AND GEORGE
peated until a single cluster ofN particles is left. Periodic
boundary conditions are usually assumed, which result
‘‘transparency’’ of the boundaries of the lattice for movin
subclusters and, on the other hand, in conservation of
number of particles.

A great number of modifications of the algorithm exis
among which are random rotations of subclusters, presc
ing ‘‘mobility’’ to each subcluster~which is, typically, pro-
portional to the inverse number of particles in this subcl
ter!, hierarchical models, off-lattice models, and others@13#.
Some of these modifications, such as the hierarchical mo
are intended to simplify the numerical procedure, and
make it possible to generate large clusters in a feasible t
the price of these simplifications is sacrificing some essen
features of real aggregation. Other modifications, such
random rotations of subclusters, are, on the contrary,
tended to make the algorithm more realistic, while comp
cating the numerical procedure.

In the present paper we use only the pure form of
algorithm described above, and generate three-dimensi
clusters with the number of particlesN up to 20 000. For
comparison, the correlation functions in Ref.@14# were stud-
ied using computer-generated CCA clusters with the ma
mum value ofN5900. Clusters with a number of particle
comparable to 20 000 have been generated earlier@10,11#,
but with the use of the hierarchical model@9#, which allows
only subclusters of the same size to collide, and consid
aggregation of only two subclusters at a time. Though t
model was shown to produce clusters very similar to th
obtained by the direct calculation, it evidently lacks som
important features of the real aggregation process. In part
lar, this model may be incapable of producing the multisc
ing effect ~which is established for the Witten-Sander clu
ters @15#!.

Using the computer-generated CCA clusters with la
N, we argue that the pure CCA model produces clusters p
sessing multiscaling. A manifestation of this effect is that
fractal dimension measured from the dependence of radiu
gyration on the number of particles differs from that me
sured from the two-point correlation function at small d
tances. In this paper, we also consider different forms
cutoff functions for the two-point correlation function.
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Concerning the four-point correlation function, we fin
theoretically its small-r asymptote, and confirm it numeri
cally. However, it turns out that the four-point correlatio
function does not have a simple scaling form with a cut
function. Instead, it can be expanded in a power series
r 2D23, wherer is the distance andD the fractal dimension
~for CCA, 1.5,D,2).

The paper is organized as follows: In Sec. II we revie
the use and definitions of correlation functions in applicat
to the static light scattering problem. In Sec. III we discu
different models for the two-point correlation function an
their properties and applicability. In Sec. IV we report som
theoretical approaches for the calculation of the four-po
correlation function, assuming that the two-point correlati
function is known. In Sec. V we describe our numerical p
cedures for computer generation of CCA clusters and
computation of correlation functions. Section VI contai
our numerical results for the two-point correlation functio
and Sec. VII those for the four-point correlation functio
Finally, Sec. VIII contains a summary and discussion.

II. CORRELATION FUNCTIONS IN OPTICS

The two- and four-point correlation functions are essen
for the description of static light scattering from fractal clu
ters. The two-point correlation function describes the av
age scattered light intensity, while the four-point correlati
function describes fluctuations of the scattered light. In t
section we review briefly the use and definitions of the
functions as applied to the scattering problem.

Here we adopt a basic assumption that the distance
tween different clusters is much larger than the wavelen
l, and the positions of clusters are random and uncorrela
so that we add up intensities of light scattered by differ
clusters rather than amplitudes.~The effects of intercluster
interference were considered in Refs.@6,7,16–18#.! At the
same time, we assume thatl is large compared to the size o
a single monomer, but can be much smaller than the cha
teristic cluster size. We will use the ensemble-average ra
of gyration,Rg , as the characteristic cluster size in this p
per. The root-mean-square~rms! distance between mono
mers in a cluster,Rrms, is equal toA2Rg . The hierarchy of
sizes can be schematically expressed as
a-

l

A. Monodisperse clusters

First, we introduce the correlation functions for the mo
simple case of monodisperse clusters. Consider scatterin
a plain monochromatic wave from an ensemble of rand
fractal clusters containingN monomers each. If the electro
magnetic interaction at the optical frequency between mo
mers in a cluster is weak~equivalently, if the frequency o
incident radiation is far from internal electromagnetic res
nance frequencies of a cluster!, one can use the first Bor
t
of

o-

-

approximation for the scattering problem. In this approxim
tion, the intensity of light scattered by themth cluster in the
direction k8 is proportional to the well known ‘‘structura
factor,’’ I m(q) @5,8,16#:

I m~q!5U(
i51

N

exp~ iq•r i
~m!!U25(

i51

N

(
j51

N

exp@ iq•~r i
~m!2r j

~m!!#,

~1!
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wherer i
(m) is the radius vector of thei th monomer belonging

to themth cluster,q5k2k8, andk is the wave vector of the
incident wave. The scattering angleu ~the angle betweenk
andk8) is related to the absolute value ofq by the equation

q5kA2~12cosu!, k52p/l. ~2!

The structural factorI m(q) depends only on the geometr
of a cluster and the scattering angle. It does not include
factors depending on the polarization of the incident wave~if
it is polarized! and scattering cross section of an individu
monomer that the cluster is built from. Normally, these fa
tors are the same for all clusters, independent of their ge
etry and number of particles@8#, and, therefore, can be ex
cluded from consideration.

The ensemble-average scattered intensity^I (q)& can be
easily obtained from Eq.~1!. Since here we consider CCA
clusters which are spherically symmetrical on average,
clear that̂ I (q)& can depend only on the scattering angleu,
but not on the azimuthal anglew. This means that̂ I (q)&
depends only on the absolute value ofq. Grouping together
the terms withi5 j andiÞ j in the double summation~1!, we
obtain

^I ~q!&5^I ~q!&5N1N~N21!f2~q!, ~3!

f2~q!5^exp~ iq•r i j !&, ~4!

wherer i j5r i2r j , iÞ j , and the ensemble averaging^ &, on
the right-hand side of Eq.~4! should be taken over pairs o
distinct monomers belonging to the same cluster.

Next, we introduce the two-point correlation functio
p2(r ) which is defined as a probability density to find a p
of distinct monomers belonging to the same cluster separ
by a distancer . For clusters which are spherically symmet
cal on average, this function does not depend on the direc
of r . We can also define the probability density to find
radius vector between two monomers in an element of v
umed3r asP2(r )5P2(r )5p2(r )/4pr 2, so that the normal-
ization rule reads*0

`4pP2(r )r
2dr5*0

`p2(r )dr51. To indi-
cate the dependence of the correlation function on
number of particlesN, we will also use the notation
p2(r ,N) where appropriate. Using the two-point correlati
function p2(r ), and performing an integration over the sp
tial angles, we obtain, forf2,

f2~q!5E
0

`

p2~r !
sinqr

qr
dr. ~5!
y
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In this paper, we are interested not only in the avera
scattered intensity, but also in a measure of its fluctuatio
which originate due to the random nature of clusters. A c
ventional parameter characterizing such fluctuations is
relative dispersion,s I /^I &, where the dispersions I is de-
fined as

s I
25^I 2&2^I &2. ~6!

Therefore, we need to calculate the average value^I 2&. For
an individual cluster~say, themth!, the squared scattere
intensity is given by

I m
2 ~q!5U(

i51

N

exp~ iq•r i
~m!!U4

5(
i51

N

(
j51

N

(
k51

N

(
l51

N

exp@ iq•~r i
~m!2r j

~m!1r k
~m!2r l

~m!!#.

~7!

By grouping together the terms in Eq.~7! with different in-
dices matching each other, and performing ensemble ave
ing, we find that

^I 2~q!&5N~2N21!14N~N21!2f2~q!

1N~N21!~N223N13!f4~q!. ~8!

Heref4(q) is defined, analogously tof2(q), as

f4~q!5^exp~ iq•r i jkl !&, ~9!

where r i jkl5r i j1r kl5(r i2r j )1(r k2r l), iÞ j , kÞ l , and
any of the pair of indices (i , j ) can coincide with any of the
pair (k,l ). The sum of all coefficients in Eq.~8! is equal to
N4, so that^I 2(0)&5N4.

Now we can introduce the four-point correlation functio
p4(r ), which is defined as the probability density to find th
absolute value ofr i jkl in a cluster~with the above limitations
on indices! to be equal tor . Similar to Eq.~5!, we can ex-
pressf4 throughp4:

f4~q!5E
0

`

p4~r !
sinqr

qr
dr. ~10!

Finally, the expression for the relative dispersio
s I /^I &, follows from Eqs.~3!, ~6!, and ~8!. In the limit of
largeN, we obtain
s I~q!

^I ~q!&
5

A~121/N!@112~N22!f2~q!1~N223N13!f4~q!2N~N21!f2
2~q!#

11~N21!f2~q!

'
A112~N22!f2~q!1~N223N13!f4~q!2N~N21!f2

2~q!

11Nf2~q!
. ~11!
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This limit should be understood as follows. We have
121/N51 in the numerator of formula ~11!, and
(N21)f2(q)5Nf2(q) in its denominator. At the sam
time, we have left unchanged the prefactors off2 ,f4, and
f2
2 under the square-root sign. This is done because,

q!1/Rg , f2 andf4 are close to unity, and the powers
N cancel out in the expression under the square root. W
q is not small, Eq.~11! simplifies to

s I~q!

^I ~q!&
'

A112Nf2~q!1N2@f4~q!2f2
2~q!#

11Nf2~q!
. ~12!

B. Polydisperse clusters

Now we turn to the case of a polydisperse ensemble
clusters. The ensemble-averaged correlation functions
polydisperse ensembles depend on the probability den
p(N) to find a cluster with a givenN. Therefore, one en
counters an infinite variety of correlation functions, whi
are difficult to classify. However, it was shown in@8# that,
actually, we do not need to introduce correlation functio
for polydisperse ensembles, if the fractal dimension of
clusters is less than 2, andq is much larger than 1/Rg . In-
stead, one can express both the average scattered inte
and its relative dispersion in terms of correlation functio
for some arbitrary~but large enough! N5const. We briefly
summarize the arguments of@8# below. A very useful con-
sideration of polydispersity effects can be also found in@19#.

It is convenient to think of a polydisperse ensemble as
a set of many monodisperse subensembles, each with its
value ofN ~assume that in the ‘‘large’’ ensemble there a
many clusters with each value ofN). Then, for each suben
semble, we can use monodisperse correlation functions
particular, the two-point correlation function,p2(r ), for a
given value ofN, has the well-known universal asympto
@13#

p2~r !5arD21/N, if r!Rg , ~13!

where a is a constant andD the fractal dimension. If
D,2, as it is the case for the CCA clusters, andq@1/Rg ,
the integral in Eq.~5! converges while the asymptote~13! is
still valid, and we have

f2~q!5c/NqD, c5aG~D21!sin@p~D21!/2# ~14!

whereG(x) is the gamma function. Using Eqs.~3! and~14!,
and in the limit of largeN, we find that

^I ~q!&N5N~11c/qD!, ~15!

where the subscript ‘‘N’’ denotes averaging over a sube
semble with a givenN. In order to find the average over th
‘‘large’’ ensemble, we simply perform an additional avera
ing of Eq. ~15! overN:

^I ~q!&5^N&~11c/qD!. ~16!

The values ofc andD can be found from a two-point cor
relation functionp2(r ) calculated for some fixed value o
N, while Eq.~16! gives the average scattered intensity for
ensemble with an arbitrary distribution ofN.
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Now we turn to fluctuations. As suggested in Ref.@8#, we
can represent the intensity of light scattered by some in
vidual random cluster withNm particles as

I m~q!5NmJm~q!, ~17!

whereNm andJm are statistically independent random va
ables, and

^J~q!&5^J~q!&511c/qD. ~18!

Then, ensemble averaging in Eq.~17! results in Eq.~16!.
Further, the relative dispersion of the random variableJ,
sJ /^J&, coincides with the relative dispersion of the sca
tered intensity calculated in a monodisperse ensemble, w
is given by formula Eq.~12!. The factorNf2(q) on the
right-hand side of Eq.~12! is independent ofN, if q@1/Rg
@becausef2(q)}1/N in this case; see Eq.~14!#. It is reason-
able to assume that the factorN2f4(q) is alsoN independent
in the above limit ofq. ~It was numerically confirmed in Ref
@8# that sJ /^J& is a universalN-independent value when
q@1/Rg .) Now we can use Eq.~17! together with the sta-
tistical independence of the variablesN and J to calculate
s I /^I & in terms ofsJ /^J& and the relative dispersion ofN,
sN /^N&. Straightforward calculations yield

s I

^I &
5

sJ

^J&F sN
2

^N&2S 11
^J&2

sJ
2 D 11G1/2. ~19!

This formula was numerically verified in@8#.
Thus, ifD,2 andq@1/Rg , we can consider correlation

functions for monodisperse ensembles only. However, if o
of these inequalities does not hold, we cannot use the
versal asymptote~13! to calculatef2(q). In this case one
needs to know the exact form ofp2(r ), as well as the size
distribution of clusters. It is still possible to use the idea
subensembles to calculate the average scattering inte
analogously to Eqs.~15! and~16!. But if ^I (q)&N is a general
function ofN andq, it becomes impossible to make a fa
torization of random variables, as was done in formula~17!.

C. Optical form factors and correlation functions

The optical form factorsf2(q) andf4(q) can be always
found by analytical or numerical integration according
Eqs. ~5! and ~10! if the correlation functions are known. In
some instances, it is enough to know only a small-r asymp-
tote for the correlation function, as in the case of calculat
f2 whenD,2 andq@1/Rg . But in general, it is desirable
to know the complete correlation functions. Such knowled
would allow us, for example, to calculatef2 in the ‘‘inter-
mediate’’ region ofq (qRg;1), or whenD.2. We shall
see below that the complete correlation functionp4 is re-
quired for a calculation off4 for any q, since p4 grows
faster thanr at small r , and it takes many oscillations o
sinqr for integral ~10! to converge.

Due to the very complex nonequilibrium nature of st
chastic aggregation processes that lead to formation of fra
clusters, it seems impossible, in general, to find the corr
tion functions analytically@apart from the universal asymp
tote ~13!#. This fact adds importance to approaches based
numerical simulations of aggregation and analytical appro
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mations of numerically calculated correlation function
Since it is impossible to approximate numerical functions
every detail, below we formulate some requirements for a
lytical functions which are intended to represent real cor
lation functions.

First, the correlation functions must have the corr
small-r asymptote. As we saw above, this provides the c
rect average scattered intensity whenD,2 andq@1/Rg . If
we assume scaling~power-law! behavior for correlation
functions at smallr , the correct asymptote includes two co
stants: the exponent and the structural coefficient (D anda
in the case ofp2).

The second requirement is the correct normalization
correlation functions, which results inf2(0)5f4(0)51.
We also require that the correlation functions have corr
second moments. This provides the correct asymptote
f2(q) and f4(q) at small q. For example, f2(q)
'12(qRrms)

2/61••• when r→0, where Rrms
2 52Rg

2

5*0
`r 2p2(r )dr.
A general requirement for any probability distributio

function whose argument is distance in space is that
probability element,p(r )dr, is invariant under scale trans
formation of the formr→br . This requirement does not a
fect the functional form ofp(r ) @provided it has the correc
dimensionality 1/L#, but rather governs the rule for the sca
transformation of dimensional coefficients, such asa in Eq.
~13!.

A specific requirement forp2(r ) originates from the prin-
ciple of irreversibility of aggregation~see Sec. III A 1
below!. This principle requires that N1p2(r ,N1)
>N2p2(r ,N2), if N1.N2.

Finally, we adduce the first three terms of the Taylor e
pansion for the optical form factorsf2(q),f4(q) near
q50:

f2~q!512
q2^r i j

2 &
6

1
q4^r i j

4 &
120

, ~20!

f4~q!512
q2^r i j

2 &
3

1
q4

60F ^r i j4 &1
5

3
^r i j

2 r kl
2 &G , ~21!

f4~q!2f2
2~q!5

q4@^r i j
2 r kl

2 &2^r i j
2 &2#

36
. ~22!

Here ^r i j
2 &5Rrms

2 52Rg
2 . From this example, we see th

f4(q) differs fromf2
2(q) in the fourth order ofq, if there is

a statistical dependence betweenr i j and r kl .

III. THEORETICAL MODELS FOR THE TWO-POINT
CORRELATION FUNCTION

It is well known that the fractal dimension can be deriv
either from the two-point correlation function at small di
tances or from the dependence of the average radius of
ration on the number of monomers in a cluster. If there is
multiscaling, the two approaches must yield the same re
This is not necessarily the case if the clusters manifest m
tiscaling. Then the functional form of the two-point correl
tion function becomes more complex.
.

a-
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A. Models with no multiscaling

1. General nonmultiscaling dependence

If there is no multiscaling in the system, the two-poi
correlation function has the form

p2~r ,N!5aN21r D21f 2@r /Rg~N!#, ~23!

wherea is a constant andRg(N) is the average radius o
gyration for a monodisperse ensemble of clusters, wh
scales withN as

Rg~N!5R0N
1/D, N@1, ~24!

andR0 is a constant of the order of the minimum separat
between monomers in a cluster. The functionf 2(x) describes
the cutoff of the correlation function. It is close to unity
R0 /Rg!x!1, so that Eq.~24! tends asymptotically to the
universal scaling dependence~13!. WhenR0!Rg , this can
be expressed asf 2(0)51. For largex, f 2(x) must decrease
quickly enough to allow normalization. From normalizatio
of p2(r ,N) and formula~24! for Rg , it follows that

aR0
DE

0

`

xD21f 2~x!dx51. ~25!

Another relation forf 2 can be obtained by calculating th
rms distance between monomers,Rrms5A2Rg , by using
Rrms
2 5*0

`r 2p2(r ,N)dr. This relation is

aR0
DE

0

`

xD11f 2~x!dx52. ~26!

Given rules~25! and ~26!, the possible choice for the cutof
function is still very wide. In order to satisfy Eqs.~25! and
~26! with given constantsa, D, andR0, f 2(x) must have, in
general, at least two adjustable parameters. An alterna
approach~see, for example, Refs.@4,5#! allows f 2(x) to have
only one adjustable parameter, and treats, instead, eithera or
R0 as an adjustable parameter. We argue that a func
f 2(x) with two adjustable parameters is more appropriate
it allows us to reproduce simultaneously such important f
tures of the actual~experimental! distribution p2(r ,N) as
asymptote~13! and the gyration radius~24!.

Another general property off 2(x) follows from the con-
cept of irreversible aggregation@15#. This concept can be
most directly applied to Witten-Sander clusters@15#. Con-
sider the density of monomers measured at the distancr
from the center of the Witten-Sander aggregation proc
~the ‘‘seed’’!. This density can be written asr (c)(r ,N)
5Np2

(c)(r ,N), where the superscript ‘‘(c)’’ indicates that the
distancer is measured from the center of aggregation. Due
irreversibility of the aggregation process, the density fun
tion can only increase as the aggregation process goes on
the number of monomersN increases. Therefore, we ca
state thatr (c)(r ,N1)>r (c)(r ,N2) if N1.N2. Obviously, this
idea cannot be applied directly to the CCA clusters beca
the latter do not have centers of aggregation, and the t
point correlation functionp2(r ,N), which is important for
optics, differs in its definition fromp2

(c)(r ,N). However, we
will see below from numerical calculations that the inequ
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ity N1p2(r ,N1)>N2p2(r ,N2) if N1.N2 always holds for
CCA clusters. By analogy, we can attribute this property
the irreversibility of the cluster-cluster aggregation proce
which means that whenever a bond between two subclus
is made, it becomes stable. Application of the above ineq
ity to Eq. ~23! leads to the conclusion thatf 2(x) must be a
monotonously decreasing function ofx.

The value ofaR0
D is fixed; it does not depend on th

choice of the unit of length, i.e., it is invariant with respect
any scale transformation. This fact follows from Eq.~25!,
and agrees with the general requirement of scale invaria
of p2(r ,N)dr:

p2~r ,N!dr5aR0
DxD21f 2~x!dx, x5r /Rg . ~27!

In addition, p2(r ,N)dr does not depend onN, if
r /Rg5const. The latter property can be viewed as a ma
festation of self-similarity, which is inherent only to fract
clusters~unlike the scale invariance ofp2dr, which is not
related to fractality!.

If p2(r ) has the form Eq.~23!, the optical form factor~5!
becomes a function ofqRg only: f2(q,N)5f2(qRg).

2. Generalized exponential model

One of the mostly common used forms forf 2(x) @4,19# is
the generalized exponential~GE!

f 2~x!5exp~2axb!. ~28!

Note that the particular cases of simple exponential (b51)
and Gaussian (b52) functions, which are widely used in th
literature@4,19#, contain only one adjustable parameter, a
therefore can satisfy Eqs.~25! and~26! only by coincidence.

From the ratio of equations Eqs.~25! and ~26!, we find
that the constantsa andb must satisfy

a5F GSD12

b D
2GSDb D G b/2

. ~29!

In addition, from Eq.~25! it follows that

aR0
D5

bFGSD12

b D GD/2
2D/2FGSDb D GD/211[FGE~b,D !. ~30!

The functionFGE(b,D) on the right-hand side of Eq.~30!
diverges asb21/2(112/D)(D/b)(D/211) in the vicinity of
b50 and decreases monotonously withb to its lower
bound,

FGE~`,D !5DD/211~2D14!2D/2. ~31!

If the actual value ofaR0
D is smaller than the lower boun

~31!, the GE cutoff function cannot satisfy Eqs.~25! and
~26!.

Any reasonable cutoff function must have a finite fi
derivative atx50, to provide enough space for the smalr
o
s,
rs
l-

ce

i-

d

t

asymptote to manifest itself. This condition results inb.1
and, consequently,aR0

D,FGE(1,D), where

FGE~1,D !5@D~D11!/2#D/2/G~D !. ~32!

Thus, the GE cutoff model can be used whenFGE(`,D)
,aR0

D,FGE(1,D). Note thatFGE(x,D) is a monotonously
decreasing function ofx and, therefore, the above interval
not empty.

The GE cutoff satisfies the irreversibility principle, be
cause Eq.~28! is a monotonously decreasing function. B
low, we will see that it can be not always true in the case
multiscaling.

3. Overlapping sphere model

Another model for the cutoff function is the so-calle
model of overlapping spheres~OS’s! @4#. This model origi-
nates from the two-point correlation function for nonfrac
clusters of monomers distributed randomly and with no m
tual correlation in a spherical volume of a radiusR. This
correlation function can be found analytically, and is giv
by the integral

p2~r ,R!54pr 2E r~r2r 8,R!r~r 8,R!d3r 8, ~33!

wherer(r ,R) is the density of particles~unity if r,R and
zero otherwise!. The integral in Eq.~33! is equal to the vol-
ume of intersection of two spheres of radiusR separated by
the distancer between their centers. The result forp2, that
follows from Eq.~33!, is

p2~r ,R!5H @~3r 2!/~2R3!#~r /2R21!2~r /2R12! if r<2R

0 if r.2R .
~34!

The idea of the OS model is to take the cutoff function f
trivial clusters and to use it for fractal clusters. While in th
trivial case the parameters of the cutoff function are defin
by the radiusR of the spherical volume occupied by th
particles, for random fractal clusters such a parameter d
not exist. Instead, we write the cutoff function in the follow
ing form:

f 2~x!5H ~x2x0!
2~x12x0!/~2x0

3! if x<x0

0 if x.x0 .
~35!

Evidently, the OS model in its pure form contains only o
adjustable parameterx0. Its value can be found from the rati
of Eqs.~25! and ~26!:

x05F2~D12!~D15!

D~D11! G1/2. ~36!

However, we must satisfy one of the Eqs.~25! and ~26!
independently. In order for this to be possible, the followi
relation betweenaR0

D andD must hold:

aR0
D5

D~D11!~D13!

3 F D~D11!

2~D12!~D15!G
D/2

. ~37!
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If, by any chance, the experimental values ofa, D, and
R0 satisfy Eq.~37!, the OS cutoff with one adjustable param
eter~35! can be used. If not, one can further generalize fu
tion ~35! and write

f 2~x!5H ~x2x1!
2~x12x2!/~2x1

2x2! if x<x1

0 if x.x1 ,
~38!

wherex1 andx2 are independent adjustable parameters. S
stitution of Eq.~38! into Eqs.~25! and ~26! results in

x25
D12

2

x1~x1
22x1,0

2 !

~D13!x1,max
2 2~D15!x1

2 , ~39!

aR0
D5

D~D11!~D12!2~D13!

12

x1
22x1,0

2

x1
D12 [FOS~x1 ,D !,

~40!

x1,05F2~D14!~D15!

~D11!~D12! G1/2,
~41!

x1,max5F2~D14!~D15!

D~D11! G1/2,
wherex1 must be found from Eq.~40!. The maximum value
of FOS(x1 ,D) as a function of x1 is reached when
x15x1,max, and is equal to

FOS~x1,max,D !

5
D~D11!~D12!~D13!

6 F D~D11!

2~D14!~D15!G
D/2

. ~42!

If it happens that the actual value ofaR0
D is greater than the

value ofFOS(x1,max,D) Eq. ~42!, the generalized OS mode
cannot satisfy Eqs.~25! and ~26!. If aR0

D is smaller than
F(x1,max), Eq. ~40! has two solutions forx1, both exceeding
the value ofx1,0.

Theoretically, any of the two possible solutions to Eq
~39! and~40! can be chosen, but in practice we need also
satisfy the irreversibility principle which states thatf 2(x)
must be a positive monotonously decreasing function. A
plied to Eq.~38!, this requirement results in

x2.x1/4 or x2,2x1/2, ~43!

where x1 is positive by definition@otherwise, the interva
where cutoff ~38! is defined becomes empty#. Using Eqs.
~39! and ~43!, we find the allowed interval forx1 as

x1,0,x1,min,x1,x1,max, ~44!

where

x1,min5F2~D14!~D15!

D~D13! G1/25x1,maxSD11

D13D
1/2

. ~45!
-

b-

.
o

-

Thus one solution~with x1,minx1,x1,max) to Eq. ~40! is ac-
ceptable; the second solution~with x1.x1,max) either violates
the irreversibility principle or leads to negative values
p2.

The value ofFOS(x1,min,D) is given by

FOS~x1,min,D !5
1

D11SD13

D11D
D/2

FOS~x1,max,D !. ~46!

The values ofaR0
D that can be compatible with the OS mod

lie in the intervalFOS(x1,min,D),aR0
D,FOS(x1,max,D). We

note that the ratioFOS(x1,max,D)/F
OS(x1,min,D) increases

with D. ForD52, this ratio is equal to 9/5.

B. Multiscaling

The multiscaling phenomenon is well established
Witten-Sander clusters@15#. It also was recently observed i
computer-generated CCA clusters@21#. The presence of mul-
tiscaling results in a more general scaling behavior of
two-point correlation function than the one specified by fo
mulas ~23! and ~24!. In particular, the value ofD defined
from the asymptotic behavior~13! of p2(r ,N) at small dis-
tances can differ fromD found from the dependence~24! of
Rg on N. However, we emphasize that it does not follo
from D15D25D that the two-point correlation function
must necessarily have the form Eq.~23!. In this paper, we
refer to multiscaling asany deviation from the most simple
functional form Eq.~23! including, but not limited, to the
case ofD1ÞD2.

In this subsection we will assume that multiscaling tak
place only in the two-point correlation function, while th
radius of gyration obeys the simple scaling form~24! ~prob-
ably with a different exponentD2). The case where the cor
relation function and the gyration radius both demonstr
multiscaling is considered in Sec. III B 1.

1. General multiscaling dependence

If two different exponentsD1 andD2 exist, the most gen-
eral functional form forp2(r ,N), which has the universa
asymptote Eq.~13!, is

p2~r ,N!5aN21r D121g2@r /Rg~N!,N#, ~47!

Rg~N!5R0N
1/D2, N@1, ~48!

whereg2(0,N)51 for anyN ~assuming thatRg@R0). Note
that sinceg2(x,N)→1 whenx→0 for anyN, it is impos-
sible to factorizeg2(x,N) asg2(x,N)5g2a(x)g2b(N).

The two rules forg2(x,N), analogous to Eqs.~25! and
~26!, are

aR0
D1E

0

`

xD121g2~x,N!dx5N12D1 /D2, ~49!

aR0
D1E

0

`

xD111g2~x,N!dx52N12D1 /D2. ~50!

As above,aR0
D1 is invariant with respect to any scale tran

formation; in addition, it does not depend onN by the defi-
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nitions of the constantsa andR0. Therefore, the only sourc
of the dependence onN on the left-hand sides of Eqs.~49!
and ~50! is the functiong2(x,N).

The valuep2(r ,N)dr now is defined by

p2~r ,N!dr5aR0
D1ND1 /D221xD121g2~x,N!dx. ~51!

The explicit dependence ofp2(r ,N)dr onN ~apart from the
factor x5r /Rg) may be viewed as a violation of the sel
similarity. However, the factorND1 /D221g2(x,N) can, in
principle, be independent ofN in some region ofx, which
would mean self-similarity in the intermediate asymptote.
other words, a cluster can be statistically not self-similar a
whole, but its smaller parts of different sizes lying in th
regionR0!r!Rg can still be self-similar.

The optical form factorf2, Eq. ~5!, now depends on both
qRg andN. It becomes a general function of two variabl
q andN. From the scattering perspective, this means tha
the case of multiscaling the differential scattering cross s
tion ~normalized to unity forq50) depends not only on th
dimensionless size parameterqRg , but also on the numbe
of particles in a cluster.

2. Generalized exponential cutoff in the case of multiscaling

Let us consider how the model cutoff functions can
used in the case of multiscaling. For the GE cutoff functi
~28!, we can assume thata andb are functions ofN:

g2~x,N!5exp@2a~N!xb~N!#. ~52!

The equations fora andb, which follow from Eqs.~49! and
~50!, are quite similar to Eqs.~29! and ~30!:

a~N!5F GSD112

b~N! D
2GS D1

b~N! D G
b~N!/2

. ~53!

aR0
D1ND1 /D2215

b~N!FGSD112

b~N! D GD1 /2

2D1/2FGS D1

b~N! D G
D1 /211

[FGE@b~N!,D1#. ~54!

The last equation specifies the dependenceb(N) implicitly.
If D1,D2, the left-hand side of Eq.~54! decreases with

N, and, whenN is large enough, becomes smaller than
lower bound of the right-hand side, given by Eq.~31! ~with
D replaced byD1). This means that the multiscaling G
cutoff cannot be used for arbitrary largeN whenD1,D2.
However, in practice we may not need to deal with e
tremely largeN. If the ratio uD22D1u/D2 is much smaller
than unity, Eq.~54! can still have a solution for some pra
tical values ofN, even ifD1,D2.

Consider the case ofD1,D2 in more detail. As men-
tioned above, the expression on the right-hand side of
~54! is a monotonously decreasing function ofb. Therefore,
the solution to this equation,b(N), is a monotonously in-
creasing function ofN if D1,D2, provided this solution
a

in
c-

e

-

q.

exists. That is,b(N) grows toward infinity whenN ap-
proaches some critical value, and there is no solution
larger values ofN. The critical value ofN is equal to
@aR0

D1/FGE(`,D1)#
D2 /(D22D1), whereFGE(`,D1) is defined

by Eq. ~31!. If D22D1!D2, the critical value ofN can be
large. In practice, we can use the GE cutoff withD1,D2, if
the number of monomers is much smaller than the ab
critical value. ~According to our calculations, the critica
value ofN is ;107 monomers for three-dimensional CC
clusters; see Sec. VI B.!

If D1.D2, b(N) is a monotonously decreasing functio
of N, and a solution to Eq.~54! always exists. However, fo
some value ofN, b will become smaller than unity, and
function ~52! cannot serve as a cutoff function. The chara
teristic value of N in this case is @FGE(1,D1)/
aR0

D1]D2 /(D12D2).
We now consider the limitations which are set upon t

dependenceb(N) by the principle of irreversible aggrega
tion. For the GE cutoff function, it states that

a~N1!F r

Rg~N1!
Gb~N1!

,a~N2!F r

Rg~N2!
Gb~N2!

if N1.N2 .

~55!

Using formula~48!, we can rewrite this inequality as

S r

R0
D b~N1!2b~N2!

,
a~N2!N1

b~N1!/D2

a~N1!N2
b~N2!/D2

if N1.N2 . ~56!

By looking at the limit of r@R0, we find that b(N1)
2b(N2) must be a negative number or zero; otherwise
expression on the left-hand side of Eq.~56! can exceed any
given number whenr /R0 is large enough. Therefore, w
conclude thatb(N) must be a monotonously decreasin
function ofN in order to satisfy the irreversibility principle

As we saw above,D1,D2 results in an increasing func
tion b(N), which is incompatible with the irreversibility
principle. However, we should note that in real clusters
violation of this principle can occur at very large values
x5r /Rg , where the theoretical cutoff is no longer valid. In
deed, the real correlation functions become exactly equa
zero for large values ofx, while the GE cutoff is always
positive. This means that the real correlation function m
decrease faster for largex than any GE model can provide
On the other hand, it should pose no difficulty for a theor
ical description of the correlation function, since the phy
cally important integrals of the type of Eq.~5! converge
much sooner than the violation takes place.

Lastly, we consider the particular case ofD15D25D,
where a and b becomeN-independent constants. Th
means that the GE cutoff function~52! becomesN indepen-
dent too. However, a general functiong2(x,N) can depend
on N even ifD15D2 ~see Appendix A!. As a result, multi-
scaling can exist even ifD15D25D, but the GE cutoff is
incapable of describing this kind of multiscaling.

3. Overlapping spheres cutoff in the case of multiscaling

Analogously to Sec. III B 2, we consider the OS mod
~38!, with x1 andx2 being functions ofN:
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g2~x,N!5H @x2x1~N!#2@x12x2~N!#/@2x1
2~N!x2~N!# if x<x1~N!

0 if x.x1~N! .
~57!
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The relation betweenx1(N) andx2(N), Eq. ~39!, still holds
in this case~with D being replaced byD1), but instead of
Eq. ~40! we have

aR0
D1ND1 /D2215FOS~x1 ,D1!. ~58!

Comparing this equation to its counterpart, Eq.~54!, we can
notice the main differences between OS and GE cutoffs.

First, the functionFGE(b,D1) has a finite lower bound
but is not limited from above.FOS(x1 ,D1) has, on the other
hand, a finite upper bound but can approach zero. T
means that in the OS model the value ofaR0

D1ND1 /D221

must go to zero for largeN. Subsequently, the case o
D1,D2 is more compatible with the OS cutoff tha
D1.D2 ~contrary to the GE case!. Exactly as in the GE case
we can still use the OS cutoff withD1.D2 if the value of
N is not too large. The critical value ofN is
@FOS(x1,max,D1)/aR0

D1#D2 /(D12D2), whereFOS(x1,max,D1) is
given by Eq.~42!.

Second, in the OS model there are, generally, two p
sible solutions to Eq.~58! which, in the case of multiscaling
result in two possible branches of the functionx1(N). As we
saw above, application of the irreversibility principle leav
only one allowed solution, namely the one withx1,x1,max,
if there is no multiscaling in the system. But if the multisca
ing is manifested, consideration of the irreversibility pri
ciple becomes more complicated. It is shown in Appendix
that, in the limit of very largeN and D1,D2, the upper
branch of the solution (x1,x1,max,x2.0) violates the irre-
versibility principle, while the lower branch
(x1.x1,max,x2,0), though satisfying the irreversibility prin
ciple, leads to negative values ofp2 for large r .

Finally, the OS model is incapable of describing mul
scaling withD15D2 due to the same reasons that were d
cussed in Sec. III B 2 for the GE model.

4. Model of continuous fractal dimension

The model of continuous fractal dimension~CFD! was
proposed in Refs.@15,20# for description of multiscaling.
The CFD was calculated numerically in Ref.@15# for Witten-
Sander aggregates.

The two-point correlation function in the CFD model
given by the expression

p2~r ,N!5aN21
r D[ r /Rg~N!]21

R0
D[ r /Rg~N!]2D1

h2@r /Rg~N!#. ~59!

HereD(x) is the CFD, andRg depends onN according to
Eq. ~48!. Since Eq.~59! must coincide with Eq.~13! when
r!Rg , we require thatD(0)5D1 andh2(0)51. Note that
there is no general requirement thatD(`)5D2; at least it
cannot be deducted from the definitions ofD2 @Eq. ~48!# and
is

s-

-

h2 @Eq. ~59!#. But, as can be seen from Eqs.~51! and ~60!
~see below!, a cluster becomes self-similar in the limit o
x@1 if D(`)5D2.

The factorR0
D[ r /Rg(N)]2D1 in Eq. ~59! provides the correct

dimensionality ofp2. In order to satisfy the dimensionalit
requirement, we can useRg instead ofR0 in the denominator
of Eq. ~59!. But it easy to see that, in this case, Eq.~59!
would degenerate into a nonmultiscaling dependence w
f 2(x)5xD(x)2D1h2(x).
The functional dependence~59! is less general than Eq

~47!. The latter is, evidently, the most general form of
function of two variables,r andN. In order for Eqs.~47! and
~59! to represent the same function, the following relati
must hold:

g2~x,N!5xD~x!2D1N[D~x!2D1]/D2h2~x!. ~60!

Substituting this expression forg2(x,N) into Eqs.~49! and
~50!, we find that

aR0
D1E

0

`

xD~x!21ND~x!/D221h2~x!dx51, ~61!

aR0
D1E

0

`

xD~x!11ND~x!/D221h2~x!dx52. ~62!

It was shown in@15# from the irreversibility principle that
D(x) must be a monotonously decreasing function. On
other hand, it follows from Eq.~61! that the function
D(x)/D221 must change its sign@to prove this, consider the
derivative ]/]N of Eq. ~61!#. At last, we know that
D(0)5D1. These three facts are compatible with each ot
only if D1.D2.

Note that in order to calculate numericallyD(x), we do
not need to know the cutoff functionh(x). Indeed, we can
take clusters with differentN and differentRg , and choose
some value ofx common for all clusters. Then the value o
r would be different for clusters with differentN, which
makes it possible to calculateD(x) from the slope of
p2(r ,x5const) as a function ofr .

C. Double multiscaling

In Secs. III B 1–III B 4, we considered multiscaling on
in the correlation function, but assumed that the radius
gyration obeys the simple scaling dependence~48!. Now we
assume that it is not so, andRg(N) is an arbitrary monoto-
nously increasing function. In this case, the crucial role
all theoretical models plays the functionRg

D1(N)/N. We em-
phasize that the constantD1 should be found from the small
r asymptote ofp2 rather than the radius of gyration.

We can still use the GE and OS models for cutoff fun
tions. Relations~53! and ~39! do not change, but Eqs.~54!
and ~58! transform to
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aRg
D1~N!/N5F ~* !~adjustable parameter!, ~63!

where (* ) denotes either GE or OS, and the adjustable
rameter isb or x1 for the GE or OS models, respectively. T
select an appropriate model, one should analyze how
functionRg

D1(N)/N behaves whenN→`.
It is a little more difficult to use the CFD model in th

case of double multiscaling. For this model, we need a
rameter of dimensionality of length. As mentioned in S
III B 4, Rg cannot be used as such a parameter, becau
leads to degeneration of CFD into a nonmultiscaling mod
But the parameterR0 is not precisely defined in the case
double multiscaling. In fact, there might be several para
eters of the dimensionality of length, which govern the d
pendence ofRg onN. However, we can choose the smalle
of them and call itR0. It can be a lattice period or a mini
mum separation between particles, or the average dist
from a monomer to its nearest neighbor~the latter character
istic always exists!. Regardless of the definition ofR0, we
can always writeRg(N)5R0c(N), wherec(N) is a dimen-
sionless function. Then, instead of Eq.~49!, we obtain

aR0
D1E

0

`

N21cD~x!~N!xD~x!21h~x!dx51. ~64!

Applying the derivative]/]N to Eq. ~64!, we find that
that D(x)N@]c/]N#/c21 must change its sign as a fun
tion of x for any N. This, in particular, must be true fo
N→`. If we make the reasonable assumption th
0,c1,D(x),c2,`, we come to the conclusion that the
must exist a finite limit ofN@]c/]N#/c whenN→`. The
condition for such a limit to exist is thatc(N) is a power
function for largeN. In other words,Rg must depend onN
according to Eq.~48!, at least for large values ofN.

To summarize, the CFD model can be used in the cas
double multiscaling only when limN→`Rg(N)5R0N

1/D2.
Note that this requirement follows only from normalizatio
of p2(r ,N)

IV. THEORETICAL MODELS FOR THE FOUR-POINT
CORRELATION FUNCTION

In this section we propose a method to deduce the sm
r asymptote ofp4 theoretically, considering thatp2 is
known. The problem of the cutoff function forp4 will be
considered numerically in Sec. VII.

From a mathematical point of view, the four-point corr
lation function p4(r ) is just some probability distribution
function. It has the same normalization asp2(r ) but a differ-
ent second moment. That is, the second moment ofp2 is
^r i j

2 &5Rrms
2 52Rg

2 , while the second moment ofp4 is
^r i jkl

2 &5^(r i j1r kl)
2&52Rrms

2 54Rg
2 .

A. Approximation of statistical independence

It is well known that the positions of monomers in a clu
ter are correlated. In other words, the information that th
is a monomer at the pointr i influences the probability to find
another monomer somewhere else, say, at the pointr j . The
smaller the distanceur i2r j u, the stronger the correlation. Th
source of this statistical dependence is evident: monom
-

he

-
.
it
l.

-
-
t

ce

t

of

ll-

e

rs

tend to group close to each other, forming ‘‘blobs’’ an
empty ‘‘holes’’ of all sizes, up to the maximum cluster siz

But if we considerr i j and r kl as random variables, th
reason for their statistical dependence is not as clear. Ima
that we found a pair of monomers in a cluster separated
r i j . The question that we have to answer is: does this
change the probability of finding another pair of monome
separated byr kl ~as compared to thea priori probability!? If
the answer is negative, thenr i j andr kl are statistically inde-
pendent random variables, which constitutes the main
sumption of the approximation of statistical independen
~ASI!.

Strictly speaking, if the ASI was correct, we would n
need to know the correlation functionp4 at all. Indeed, the
optical form factorf4(q) could be calculated simply a
^exp(iq•r i jkl )&5^exp(iq•r i j )&^exp(iq•r kl)&5f2

2(q). This
equality always holds for smallq @up to second order inq,
see Eqs.~20!–~22!#. But for largerq, it is not necessarily so

To illustrate the above statement, consider the rela
dispersion of the scattered light given by formula~12!. As
follows from Eqs.~12! and ~14!, if f4(q)5f2

2(q), we have

s I~q!

^I ~q!&
5A112c/qD

11c/qD
, ~65!

where the constantc is given in Eq.~14!. On the other hand
it was shown numerically in Ref.@8# that the relative disper-
sion is very close to unity when 1/Rg!q!1/R0, and from
formula ~65! we see that this would be true only
2c/qD1!1. With the use of Eqs.~2! and~14!, this inequality
translates into

2aR0
D1sin@~D121!p/2#

@2pA2~12cosu!#D1
S l

R0
D D1

!1. ~66!

Since the prefactor for (l/R0)
D1 is the order of unity or

larger, the wavelength must be much smaller than the c
acteristic separation between monomers,R0, in order to pro-
vide the above inequality. But this contradicts the numeri
results of Ref.@8#, where the value ofl was chosen to be
significantly larger thanR0, but the relative dispersion wa
still very close to unity for large scattering angles.

The above example demonstrates that the hypothesi
statistical independence is not confirmed numerically@8#.
Still, it is convenient to use this hypothesis as a start
point. Below, we adopt the following theoretical approac
First, we use the ASI to find the small-r asymptote ofp4.
Then we show that the same small-r asymptote follows from
the requirement of correct small- and large-q asymptotes of
f4(q). In Sec. VII we find the higher corrections top4 nu-
merically.

Now we turn to the determination of the functional for
of p4 in the ASI. The functionp4(r ) was defined as a prob
ability density to find the absolute value ofr i jkl5r i j1r kl to
be equal tor . Since in the ASIr i jkl is a sum of two statisti-
cally independent random variables, we can apply the g
eral formalism of the theory of functions of random va
ables, which allows us to express the probability distribut
p(x1y5r ) through a convolution of p(x5r ) and
p(y5r ). Herex andy are statistically independent rando
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variables, andr is the argument of the probability distribu
tion functions. It is more convenient to apply this formalis
to the functionsPm(r )5Pm(r )5pm(r )/4pr 2, wherem52
and 4, andPm(r ) is the corresponding probability density
find the value ofr i j ~for m52) or r i jkl ~for m54) in the
three-dimensional element of volumed3r :

P4~r !5E P2~r2r 8!P2~r 8!d3r 8. ~67!

The normalization ofP4 follows immediately from Eq.~67!
if P2 is normalized correctly. Returning to our usual no
tion, p2 and p4, and performing integration over spati
angles, we find that

p4~r !5
r

2E0
`p2~r 8!

r 8
dr8E

ur2r 8u

r1r 8 p2~r 9!

r 9
dr9. ~68!

First, we analyze the form ofp4 in the case of no multi-
scaling. Substituting the functionp2(r ,N) in the form Eq.
~23! into Eq. ~68!, we find that

p4~r ,N!5
a2r 2D21

2N2 Y~r /Rg!, ~69!

Y~x!5E
0

`

~ t8!D22f 2~xt8!dt8E
ut821u

t811
~ t9!D22f 2~xt9!dt9.

~70!

Here f 2(x) is the nonmultiscaling cutoff for the two-poin
correlation function.

Consider the asymptotical behavior of the integralY(x)
nearx50. If D,1.5, one can always choosex to be small
enough for integral ~70! to converge while
f 2(xt8)' f 2(xt9)'1. This means that limx→0Y(x)5const
whenD,1.5. Though, from the mathematical point of view
this constant is a leading term the expansion ofY(x) near
x50, in practice we are not always able to achieve rea
small values ofx5r /Rg . Therefore, it is desirable to obtai
the second term in the expansion ofY(x), especially when
D is close to 1.5 and the convergence of integral~70! with
f 251 is slow. Strictly speaking, the second term of the e
pansion ofY(x) depends on the form off 2. This is clear
already from the fact that the integral of the first correction
the integrand in Eq.~70! @which can be obtained with the us
of f (x)511 f 8(0)x# diverges whenD.1, i.e., for any rea-
sonable fractal dimension. However, we can assume tha
function f 2(x) decreases withx faster than any power func
tion of x and has a ‘‘characteristic length’’xc;1. Then we
can replace the infinite upper limit of integration in the fir
integral in Eq.~70! by xc /x while keepingf 25const, and the
expansion ofY(x) acquires the form

Y~x!5
c2

322D
2

c1
322D

x322D if x→0, ~71!

where c1 and c2 are positive constants. While the abo
derivation of the second term of the expansion is not ma
ematically rigorous, it turns out to be correct for two see
ingly different forms off 2: a steplike function@ f 2(x)51 if
-

y

-

he

-
-

x,x0 and f 2(x)50 if x.x0# and a linear cutoff
@ f 2(x)512x/x0 if x,x0 and f 2(x)50 if x.x0#.

Returning to the small-r asymptote ofp4(r ,N), we find
that

p4~r ,N!5
c1r

2

~2D23!N3/D2
c2r

2D21

~2D23!N2 when r!Rg .

~72!

Herec1 andc2 are positive constants, different fromc1 and
c2 used in Eq.~71!.

A similar analysis can be applied for the case
D.1.5, but it is easier to start directly from formula~68! in
this case. Indeed, the two-dimensional area of integratio
Eq. ~68! is a semi-infinite rectangular strip that is symmet
cal with respect to the liner 85r 9 and with two corners at the
points (0,r ) and (r ,0). When r→0, the integral over this
area can be replaced byA2r times a one-dimensional inte
gral along the liner 85r 9 from r to infinity. WhenD.1.5,
this integral converges and returns the result of Eq.~72!. But
now the first term in this expression is leading, and the s
ond term is the first correction, contrary to the case
D,1.5. It should be noted that in both cases the first corr
tion is negative.

Since we are mostly interested in the situation wh
D.1.5 ~CCA clusters!, we can rewrite Eq.~72! as

p4~r ,N!5
br2

N3/DF12c1S r

Rg
D 2D23G . ~73!

Again, c1 is a positive coefficient. The expression in th
square brackets can be viewed as the first two terms o
expansion ofp4 in terms of integer powers of (r /Rg)

2D23. In
principle, we can think of a sequence of coefficientsck ~with
c051) which define this expansion completely. Such an
pansion does not coincide with the Taylor expansion. T
can be easily seen from the example of a GE function of
form f 4(x)5exp(2ax2D23). The first derivative of this func-
tion at x50 is equal to2` if 1.5,D,2. A function with
an infinite derivative atx50, though formally satisfying the
condition f 4(x)'1 if x!1, does not leave any space for th
universal asymptote to manifest itself, as pointed out in Se
III A 2 and III B 2.

Thus we have to conclude that, in the framework of t
ASI, the functional form ofp4(r ) is more complicated than
the simple scaling behavior of the kind of Eq.~23!. It cannot
be described by a scaling behavior with a cutoff that ha
finite first derivative atr50. Note that one of the alternativ
possibilities is to consider separate cutoff functions for ea
term in Eq.~72!.

Finally, the expression forp4, Eq. ~72!, is modified in the
case of multiscaling as

p4~r ,N!5
c1r

2

~2D123!N[2~12D1 /D2!13/D2]

2
c2r

2D121

~2D123!N2 when r!Rg , ~74!

where both coefficientsc1 andc2, are different from those in
formula ~72!, and can, in principle, depend onN.



es
r
t

on

e

is

f

io

n

r
o

e
f
f
er
.

le
ve
of

of

the
een

lat-
ith
l to
nal

ith

all
alf
ed,
ss,
ters
ed
sub-
his
odel
e,
-
h

la-
es

e-

e

7324 55MARKEL, SHALAEV, POLIAKOV, AND GEORGE
B. Method of Fourier transformation

As discussed in Sec. IV A, the ASI correctly describ
optical form factors for small values ofq ~up to second orde
in q) but fails whenq@1/Rg . In this section we show that i
is possible to modify the cutoff functions in Eqs.~69! and
~74! in such a way that the resultant correlation functi
would produce correct results for large values ofq as well.

We start from the asymptotic behavior off4(q). As fol-
lows from Eqs. ~20! and ~21!, for q!1/Rg , we have
f4(q)5f2

2(q). For q@1/Rg , we know from numerical cal-
culations that the relative dispersion of scattered light, giv
by Eq. ~12!, is very close to unity@8#. As follows from Eq.
~12!, this means thatf4(q)52f2

2(q) for q@1/Rg . We can
write f4 in the form

f4~q,N!5j~qRq ,N!f2
2~q,N!, ~75!

where j(0,N)51, j(`,N)52, and j(x,N) is a monoto-
nously increasing function ofx with a finite first derivative.
It follows from formula ~22! that the first two terms of the
Taylor expansion ofj(x,N) near x50 have the form
j(x,N)'11c(N)x4. The basic assumption of this section
that there exists a region ofx, 0,x,xc , wherej(x,N) is
close to unity~say, uj(x)21u,d, where d is a predeter-
mined small constant! for anyN, where the right bound o
this region,xc , does not depend onN. This is always true if
there is no multiscaling, since bothf2 andf4 are functions
of qRg only in this case, andj(x,N) does not depend on
N.

Now we can use the definition off4, Eq. ~10!, and make
the inverse Fourier transformation to obtain an express
for p4(r ):

p4~r !5
2r

p E
0

`

qj~qRg ,N!f2
2~q!sin~qr !dq. ~76!

Next, we substitute expression~5! for f2 to Eq. ~76! to ob-
tain a closed expression forp4(r ) in terms of p2(r ) and
j(x,N):

p4~r !5
2r

p E
0

`E
0

`p2~r 8!p2~r 9!

r 8r 9
dr8dr9E

0

`

3j~qRg ,N!
sin~qr !sin~qr8!sin~qr9!

q
dq. ~77!

If j(x,N)51, the integral overq can be taken, and we retur
to expression~68!. If j(x,N) is a general function with the
properties specified above, integrals~77! and ~68! are not
identical. However, it is easy to show that the small-r as-
ymptote of the right-hand part of Eq.~77! coincides with Eq.
~72!. The mathematical arguments here are quite simila
those used in Sec. IV A. Since the asymptotic behavior
p4 at smallr is determined by large values ofr 8 andr 9, the
integral overq in Eq. ~77! would converge whilej'1. Ac-
cording to the assumption made above, a finite region wh
j'1 exists for anyN. In this case the first two terms o
expansion ofp4 near r50 do not depend on the form o
j(x,N), and coincide with those in the ASI. But the high
corrections top4(r ) differ, of course, from those in the ASI
n

n

to
f

re

V. NUMERICAL PROCEDURES

A. Simulation of fractal cluster aggregation

We have implemented the CCA algorithm on a simp
cubic lattice with periodic boundary conditions. We ha
built 40 random clusters for each value of the number
particles in a clusterN, except forN520 000, when we have
built only 20 clusters. The size of the latticeL varied de-
pending onN. The following values ofL were selected:
L5200 for N55000, L5260 for N57500, L5300 for
N510 000,L5310 forN512 500,L5340 forN515 000,
andL5350 forN520 000. This ensured that the density
monomers was sufficiently low (3.731024 for
N510 000), and that the cluster size was smaller than
size of the lattice. For example, the rms distance betw
two particles in clusters withN510 000 was 99.4~lattice
units!, which is substantially less than the corresponding
tice size. This was true also for the largest clusters w
N520 000, with the rms distance between particles equa
141.7. However, we should note that due to computatio
limitations,L was not proportionally large forN520 000 in
comparison with otherN. Comparing toN510 000 ~with
L5300), we could have expected thatL'300A2'424 for
N520 000.

During the aggregation, each subcluster was moved w
equal probability~independently of its size!, and no rotations
were allowed. Our simulations showed that clusters of
sizes collided during the aggregation. At approximately h
of the full aggregation time, a main subcluster was form
which accounted for about half of all aggregating ma
while the rest of the particles were aggregated in subclus
of widely varying sizes, including single nonaggregat
monomers. Closer to the end of aggregation, one large
cluster and a number of small subclusters were left. T
aggregation pattern suggests that the hierarchical m
@9,13#, which allows only clusters of the same size to collid
is, in principle, different from the ‘‘pure’’ aggregation algo
rithm. A two-dimensional projection of a typical cluster wit
N515 000 is shown in Fig. 1.

B. Numerical calculation of correlation functions

For finite lattice clusters, bothp2 and p4 are, strictly
speaking, highly singular functions. However, if the corre
tion function is used for calculation of some average valu
^F& according to

^F&5E
0

`

F~r !pm~r !dr, ~78!

and the functionF(r ) changes slowly enough, we can r
place the exact functionpm by some ‘‘smoothed’’ function
according to

pm~r !→
1

dEr2d/2

r1d/2
pm~r 8!dr8. ~79!

Below, we will use the notationpm for the smoothed func-
tion.

The natural choice for the constantd in Eq. ~79! is the
lattice unit. If we choosed to be less than the lattice unit, th
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resultant functionpm fluctuates strongly at small distance
and if we choosed to be larger than the lattice unit, we los
precision at large distances.

We have set the lattice unit and the value ofd to be equal
to unity. We calculated the functionp2(r ) for integer values
of r beginning withr51 @p2(0)50 by definition# by enu-
meration of all possible pairs of particles in each cluster.
calculation ofp4(r ), it was computationally impossible t
enumerate all possible combinations of indicesi , j , k, and
l , since the number of such combinations is proportiona
N4. Instead, we picked a fixed number of index combinatio
at random. To ensure statistical reliability of calculations,
number of random combinations was set to 23108 for each
cluster, irrespective ofN. However, this number is still much
smaller than the number of all possible combinations, e
in the smallest clusters withN55000.

Even after smoothing according to Eq.~79!, the correla-
tion functions of a lattice cluster possess some random
regularities, which are more pronounced at small distan
and may seem to be random but are, in essence, artifac
the lattice on which the cluster was built. The origin of the
irregularities is that the density of sites of the lattice its
~measured at a certain distance from the origin and avera
over angles! has certain fluctuations which disappear at la
distances, where the discrete structure of the lattice is
longer of importance. To eliminate these irregularities in
correlation function, we suggest using the following proc
dure: First, we define the density of lattice sitesn(r ) as

n~r !5DNlatt~r !/V~r !, ~80!

V~r !5
4p

3
@~r11/2!32~r21/2!3#, ~81!

where the variabler takes integer values beginning fro
r51, andDNlatt(r ) is the number of lattice sites which lie i

FIG. 1. Two-dimensional projection of a typical cluster wi
N515 000.
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the spherical shellr21/2,r 8,r11/2 with the center at the
origin. Evidently, this function becomes close to unity asr
grows, but for smallr it can significantly differ from unity
~see Fig. 2!. Then we define the corrected correlation fun
tion as

%m~r !5pm~r !/n~r !. ~82!

Sincen(r ) looks much like a statistical noise and is unity o
average ~see Fig. 2!, we can assume that*0

`%mdr
5*0

`pm(r )dr, which means that normalization is conserv
by procedure~82!. In Fig. 3 we compare the original func
tion p2(r ) and the modified function%2(r ) for an ensemble
of 40 clusters withN510 000.

VI. NUMERICAL CALCULATIONS:
TWO-POINT CORRELATION FUNCTION

A. Small-r asymptote and fractal dimension

The small-r asymptote ofp2(r ,N) is illustrated in Fig. 4,
where the lattice-corrected function%2(r ,N) is plotted for
different values ofN. We also show the theoretical asym
tote ~13! in this figure. The numerical values of constantsa
andD1 were found from the linear regression. Table I sho
the results fora andD1 for different values ofN. In the third
column of the table, we specify the range ofr where the
linear regression was used. This range was determined
eachN from the condition that a double-log plot of the fun
tion %2(r ,N) demonstrates no visually apparent deviati
from a straight line, apart from random fluctuations. For t
purpose, a plot was made in a square frame for eachN,
starting from the minimum value ofr and ending with the
maximum value, and the vertical range of the plot was c
sen from the condition that the line started in the lower l
corner of the frame and ended in the upper right cor
~these graphs are not shown!. This method of selecting a
range forr is, of course, not precise, since it relies on visu
interpretation. For example, the ranges forN510 000 and

FIG. 2. Lattice density functionn(r ).
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TABLE I. Constantsa andD1, determined by linear regression.

Using p2 Using%2

N31023 Rg Interval of r a D1 a D1

5 49.761.1 @3,15# 4.360.5 1.7460.04 4.0760.06 1.77160.006

10 70.361.4 @3,30# 4.260.2 1.7760.01 4.1660.05 1.77660.004

15 84.161.6 @3,30# 3.960.2 1.8060.01 3.8960.01 1.80460.001

20 100.262.3 @3,40# 3.860.1 1.8260.01 3.7560.02 1.82260.002
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15 000 appeared to be the same. However, for larger va
of N it was possible to choose a range forr with stronger
confidence.

The statistical errors shown in Table I are at the level
one standard deviation. These errors represent only the
certainties associated with the linear regression proced
they do not reflect any errors associated with the fact that
number of clusters was finite. However, we believe that
latter factor is insignificant, since the small-r asymptote was
reproduced with a very high precision for different e
sembles of clusters.

Now we return to the discussion of numerical resu
demonstrated in Fig. 4 and Table I. First, we see that
universal asymptote~13! describes the behavior ofp2(r ,N)
with high precision whenr!Rg . This precision is even
more apparent if we consider a figure analogous to Fig
but showingNp2(r ,N) instead ofN%2(r ,N) and with a
strong magnification of the regionr,20 ~not shown!. In
such a figure, we would see that the pointsNp2(r ,N) for
r5const, and different values ofN coincide with a precision
which by far exceeds the random-lattice-related fluctuatio

On the other hand, the data of Table I suggest that the
a weak but systematic dependence of the constantsa and
D1 on N. This fact contradicts, in principle, the idea of
universal small-r asymptote. However, it has a simple exp
nation: If N is not large enough, the interval ofr , in which
the universal asymptote is valid shrinks. Though we tried
use values ofr which are much smaller thanRg in our cal-
culations, we did not know how strong this inequality shou
be in practice. Due to computational limitations, we were
able to make this inequality as strong, for example, as
orders of magnitude. The radius of gyration was only;50
for N55000 and;100 forN520 000. On the other hand,
is possible that ifN is not large enough, and the strong i
equality 1!r!Rg is not achievable, the interval where th
universal asymptote is valid shrinks to a point. This wou
mean that the functionN%2(r ,N) plotted in a double-log
scale as a function ofr would always deviate from a straigh
line, curving toward the lower right corner of the fram
though this tendency might not be visible to the eye.

We believe that the best values ofa andD1 are those for
N515 000. The data forN520 000 cannot be so precis
because, due to computational limitations, we were not a
to make the lattice sizeL appropriately large~it should have
been larger than 400, but we were able to useL5350). In
addition, the data forN515 000 have the best precision. Th
es
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values of a and D1 found from the linear regression o
%(r ,N515 000) were used for the theoretical line shown
Fig. 4. Below, we will adopt the numerical valuesa53.9 and
D151.8. Another result which can be seen from Table I
that the use of the lattice-modified function%2(r ,N) allows
us to increase the precision of linear regression coefficie
especially for smaller values ofN.

Now we turn to the dependenceRg(N) and to determin-
ing the constantsR0 andD2 ~see Fig. 5!. We have found that
R050.6160.08 andD251.9460.06. Again, the errors are
shown at the level of one standard deviation. We see that
difference betweenD1 and D2 is more than two standard
deviations ofD2 ~the uncertainty ofD1 is too small to be
considered!. This is strong evidence in favor of multiscaling

Now we can calculate the value of the important const
aR0

D1:

aR0
D1'1.6. ~83!

B. Cutoff functions for p2

First, we consider the GE and OS cutoff functions. W
start the discussion from the nonmultiscaling perspective.

FIG. 3. Comparison of the originalp2(r ) and corrected%2(r )
correlation functions forN510 000.
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shown in Sec. III A 2, the condition of applicability of th
GE model is FGE(`,D1),aR0

D1,FGE(1,D1), where
FGE(`,D1) andF

GE(1,D1) are given by Eqs.~31! and~32!.
Using the value ofD1 found in Sec. VI A, we find that
FGE(`,D1)'0.49 andFGE(1,D1)'2.47. We see that the
above inequality is fulfilled for the GE cutoff.

For the OS cutoff, the condition isFOS(x1,min,D1)
,aR0

D1,FOS(x1,max,D1) ~see Sec. III A 3!. Using Eqs.~42!
and ~46!, we find that FOS(x1,min,D1)50.75 and
FOS(x1,max)51.29. Therefore, the condition for the OS cuto
is not fulfilled. This means that we cannot find a set of p
rameters for the OS cutoff function that would correctly r
produce the gyration radius and the small-r asymptote simul-
taneously.

The above consideration was based on the assump
thatD25D1. If this is not the case, we must replaceaR0

D1 by

aR0
D1ND1 /D221 in the corresponding inequalities. Sinc

D1,D2, the inequality for GE cutoff is fulfilled only for
N,Nmax, where Nmax5@aR0

D1/FGE(`,D1)#
D2 /(D22D1)]

'1.33107. Thus we see that the GE cutoff can be used
the case of multiscaling ifN!Nmax. For the values ofN
used here, this inequality is well fulfilled.

For the OS model we have a contrary situation. The c
dition FOS(x1,min,D1),aR0

D1ND1 /D221,FOS(x1,max,D1) is
not fulfilled for N;1, but becomes fulfilled forNmin,N
,Nmax, where Nmin5@aR0

D1/FOS(x1,max,D1)#
D2 /(D22D1)

'20 andNmax5@aR0
D1/FOS(x1,min,D1)#

D2 /(D22D1)'36 000.
As a result, in the case of multiscaling, the conditions for
OS and GE models are fulfilled for the values ofN studied in
this paper~from 5000 to 20 000!.

The GE and OS cutoff functions forN515 000 are shown
in Fig. 6. First, we discuss the GE curve. The values ofa and
b found from the numerical solution to Eqs.~53! and ~54!
are equal to 0.273 and 2.489, respectively. It is interestin
note that the values ofa andb obtained from the best fit to
the experimental curve~minimizingx2), which is depicted in
Fig. 6 by circles, came out very close to the above numb

FIG. 4. Numerically calculated functionN%2(R,N) for different
N and the theoretical asymptote~13! with a53.9 andD51.8.
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0.27660.002 and 2.4960.01, respectively. In principle, the
conditions of minimizingx2 and preserving the second mo
ment of the distribution@Eqs.~53! and ~54!! are different in
their nature, and should not lead necessarily to the sa
results. In our case, it turned out that the solution to Eqs.~53!
and~54! provides at the same time the best fit to the expe
mental cutoff curve within the framework of the two
parameter GE cutoff model.

The GE cutoff functions for two different values ofN are
shown in Fig. 7. The corresponding values ofa andb for
N55000 are 0.344 and 2.238@from numerical solutions to
Eqs.~53! and ~54!# and 0.35660.003 and 2.1860.02 ~from
the best fit!. The analogous data forN515 000 are given
above. Note thatb(N) is, indeed, an increasing function o
N, as shown theoretically in Sec. III B 2, for the case
D1,D2. A systematic dependence ofg2(x,N) onN which is

FIG. 5. Radius of gyration as a function ofN and theoretical
formula ~48! with R050.61 andD251.94.

FIG. 6. Comparison of GE and OS cutoff functions f
N515 000.
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apparent from Fig. 7 confirms the multiscaling nature of
two-point correlation function.

Theoretically, the GE cutoff functions withD1,D2
violate the irreversibility principle. More specifically, in
equality ~55! is violated for all values ofr larger than some
critical value. But in practice, such a violation happens
extremely large values ofr . This is illustrated in Fig. 8,
where we plot both sides of inequality~55! as func-
tions of r , with N1515 000 andN255000. The inter-
section of the curves occurs atr5@a(N2)Rg

b(N1)(N1)/

a(N1)Rg
b(N2)(N2)]

1/[b(N1)2b(N2)] . Given the above numeri
cal values ofN1 , N2 , a, andb, the critical value ofr be-
comes equal to;2.33104, which is more than two orders o
magnitude larger than the gyration radius forN1515 000.
Evidently, the experimental functionp2(r ) is exactly equal
to zero for such a larger , and the GE cutoff function is

FIG. 7. GE cutoff functions for differentN.

FIG. 8. Illustration of violation of the irreversibility principle by
the GE cutoff functions@see inequality~55!#.
e

r

negligibly small. As a result, the irreversibility principle i
satisfied by the GE cutoff for all physically reasonable valu
of r .

Now we turn to the OS cutoff. The values of paramete
x1 andx2 found from the numerical solution to Eqs.~39! and
~40! are equal to 3.032 and 0.825, respectively, for the up
branch (x2.0) and 6.831 and22.103 for the lower branch
(x2,0). First, as seen in Fig. 6, the lower branch~with
x2,0) provides a very poor fit to the experimental curv
Therefore, we will not discuss the lower branch here. T
upper branch provides a fair fit, but not as good as the
model. The constantsx1 andx2 found from the best fit to the
experimental curve are 2.8160.02 and 0.6160.02, respec-
tively, which are close to the corresponding values sho
above~but not as close as we had it for the parametersa and
b in the GE model!. The difference between the two O
cutoff functions@one with constants found from the solutio
to Eqs. ~39! and ~40!, and the other with constants foun
from the best fit# is shown in Fig. 9. We see that the seco
set of constants provides a better fit to the experime
curve forx,2; however, using these constants would res
in a wrong value ofRg .

If one is not interested in the small-q asymptote of the
optical form factorf2(q), Eq. ~5!, it can be appropriate to
use the OS cutoff with the constantsx1 andx2 found from
the best fit. The advantage of using the OS cutoff function
that it allows us to take integral~5! in terms of elementary
functions.

As shown in Sec. III B 3, selection of the upper branch
the solution forx1(N) can lead to violation of the irrevers
ibility principle for sufficiently large N, if D221,D1
,D2. ThoughD1 actually lies in this interval, the values o
N used in this paper are not large enough for the violation
take place. To illustrate this, we plotted the density functio
Np2(r ,N) for different values ofN, using the OS cutoff with
the parametersx1 andx2 found both from Eqs.~39! and~40!

FIG. 9. OS cutoff functions with coefficients determined fro
Eqs.~49! and~50! and from the best fit, compared to the numeric
data.
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and from the best fit. We see that the irreversibility princip
is not violated in both cases. We also show correspond
numerical curves in Fig. 10, which allows one to visuali
the quality of fit of the actual correlation functions~rather
than the cutoff functions! in the OS model. From comparin
the curves in Fig. 10, a conclusion can be made that
quality of fit increases withN.

Analogous data for the GE model are shown in Fig. 11
this figure, we do not show the curves with parameters
termined from the best fit, since they are practically indist
guishable from the curves with parameters found from so

FIG. 10. Numerical two-point correlation functions for differe
N compared to the OS model functions with coefficients determi
from Eqs.~49! and ~50! and from the best fit.

FIG. 11. The same as Fig. 10, but for the GE model functi
The coefficients determined from Eqs.~49! and ~50! and from the
best fit practically coincide.
g

e

n
e-
-
-

tion to Eqs.~53! and ~54!. In general, we can state that th
quality of fit is much better in the GE model. This fact su
ports the experimental data of@4,19#, where the cutoff func-
tion was found to be close to Gaussian (b52). For example,
the value ofb found in this paper was'2.2 forN55000.

Finally, we briefly discuss the CFD model. It was show
in Sec. III B 4 that this model is incompatible with the irre
versibility principle if D1,D2. However, the question o
how large the value ofr /Rg should be for the violation of the
ireversibility principle to take place is open. As we saw f
the example of the GE cutoff, this violation can happen
very large values ofr /Rg , which is not an essential draw
back of the model.

Technically, we can calculate the functionD(x) using
ensembles of clusters with differentN by considering the
function p2@r ,N(r )#, where N(r ) is determined from
r /Rg(N)5x5const. If this function, plotted on a double-lo
scale, looks like a straight line, we can conclude that
CFD model is correct. A mathematical measure of deviat
of a curve from a straight line is the uncertainty of line
regression coefficients. If this uncertainty is comparable
the coefficients themselves, the curve cannot be consid
as a straight line. In Fig. 12 we show the functionD(x),
calculated as a coefficient of linear regression, together w
its uncertainty. Though it is difficult to make a definitiv
conclusion, the uncertainties ofD(x) are fairly high, at the
level of 10% on average. For comparison, we would obt
this level of uncertainty, if we try to approximate the fun
tion y(x)5x2 by a linear function in the interva
xP@0,10#.

VII. NUMERICAL CALCULATIONS:
FOUR-POINT CORRELATION FUNCTION

The small-r behavior ofp4(r ,N) is illustrated in Fig. 13.
In this figure we plotted numerical curves%4(r ,N) for dif-
ferentN along with the theoretical asymptotes~72!. The co-
efficientsc1 andc2, defined by Eqs.~72!, were found from
the best fit and are shown in Table II.

d

.

FIG. 12. FunctionD(x) calculated numerically with uncertain
ties of linear regression at the level of one standard deviation.
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To obtain the data of Table II, the interval ofr was se-
lected as follows: First, an arbitrary interval was taken, st
ing at r51 and ending approximately near the maximum
p4(r ). Then the coefficientsc1 and c2 were calculated by
minimizing x2 in this interval. Next, the right bound of th
interval was decreased gradually, with the values ofc1 and
c2 calculated at each step, until they became constants~in-
dependent of the right bound! within the precision of calcu-
lation. It can be seen from Fig. 13 that the theoretical asym
tote ~72! is reproduced with great precision. We emphas
that both terms in~72! are important for a good fit. Howeve
the relative significance of the second term decreases
N. We can also conclude thatN2p4(r ,N) is not a universal
function ~i.e., independent ofN) when r!Rg , as is
Np2(r ,N). Instead, there exists a universal lim
limr /Rg→0limN→`N

2p4(r ,N)5c1r
2/(2D123). The condi-

tion N→` is rather strong, as seen from the numerical
sults. We can see from Fig. 13 that the curves
N515 000 and 20 000 are still distinguishable. The we
dependence of the coefficientsc1 andc2 onN can be viewed
as a result of multiscaling. However, it is important to e
phasize that the dependence ofc1 andc2 onN is very weak
in Table II. We expect this dependence to be much stron
for any expansion in terms ofr /Rg other than Eq.~72!.

FIG. 13. Small-r asymptote ofp4(r ,N). Numerical data are
compared to the theoretical formula~72!.

TABLE II. Coefficients c1 and c2 defined in Eq.~72! found
from the best fit.

N31023 Interval of r c1 c2

5 @1,15# 13.4560.02 18.7260.06

10 @1,30# 14.4060.01 19.1860.02

15 @1,40# 14.6160.01 19.0460.02

20 @1,50# 14.75660.004 19.2160.01
t-
f

-
e

ith

-
r
k

-

er

In order to obtain a better fit ofp4 for larger values ofr
and, in particular, in the area wherer;Rg , one can gener-
alize Eq.~73! and approximatep4(r ,N) by sums of the form

Sn~r ,N!5
br2

N3/D(
k50

n

~21!kckS r

Rg
D k~2D23!

, ~84!

wherec051 andck are coefficients different from the coe
ficientsc1 andc2 used in Table II above. We emphasize th
this particular expansion ofp4 is anticipated to have univer
sal ~independent ofN) coefficientsck , apart from a possible
weak multiscaling dependence, as demonstrated in Tab
for c1 andc2. Any expansion ofp4 in terms of other powers
of r /Rg would have coefficients which depend strongly
N and, therefore, are not useful in practice. Also, expans
~84! is, in principle, different from the Taylor expansion
since the first derivative of the ratio of its first two terms
infinite. As a result, an integer power polynomial inr /Rg
will not provide a good fit top4. For the same reason, w
cannot representp4 as a simple power function with a cutof

An example of functionSn , Eq.~84! with n510 is shown
in Fig. 14. The coefficientsc1 , . . . ,c10 were found from the
best fit. Practically, the best-fit algorithm was performed
follows: We calculated four coefficients at a time. The fir
two of them were known from Table II. The next four coe
ficients were calculated in the interval ofr @0,120# by mini-
mizing x2. Then the values of coefficientsc1 , . . . ,c6 were
considered to be fixed, and we calculated the remaining
efficients in the same interval ofr . Figure 14 demonstrate
an excellent fit up tor5160. Highern can be used if it is
desirable to fitp4 at larger values ofr .

Though it is tempting to use a GE function forp4, e.g.,

FIG. 14. Comparison of the numerically calculated functi
p4(r ,N) and expansion~84! for N515 000 andn510. The coeffi-
cients c1 , . . . ,cn are found from the best fit~minimization of
x2).



r
p
nd

n
t o
tio
io
er

,

e.
ry
a
th
e
-
ri
th

in
in

c-

te

s

or

le
er
w

ci
lly
le
a

t

an

eri-

y
to
m

i-

x-

as

.
of
n-

t

n,
of
the

of
a-
ts

on-
-0,
No.

-
rary
nd

55 7331NUMERICAL STUDIES OF SECOND- AND FOURTH- . . .
p4~r ,N!5
br2

N3/D1
exp@2a~r /Rg!

2D123#; ~85!

the coefficientsck calculated using the best fit do not suppo
this choice. The above function has only one adjustable
rameter. Unlike the GE functions studied in Secs. III A 2 a
III B 2, function ~85! has a fixed power ofr /Rg in the expo-
nent.

VIII. SUMMARY AND DISCUSSION

The correlation functionsp2 andp4 studied in this paper
are important for an interpretation of scattering experime
when the geometry of scattering objects is similar to tha
cluster-cluster aggregates, and the first Born approxima
can be used. In particular, the two-point correlation funct
p2 defines the angular dependence of the average scatt
intensity according to Eqs.~3!–~5!. In order to describe fluc-
tuations of the scattered intensity, one needs to employ
addition, the four-point correlation functionp4 @see formulas
~8!, ~10!, and ~11!#. The optical form factorsf2 and f4
defined by Eqs.~4! and ~10! are experimentally measurabl
It is important that the correlation functions, which car
information about the geometry of scattering objects, c
always be calculated by the Fourier transformation if
form factors are known~this constitutes the solution to th
so-called inverse problem!. On the other hand, if the corre
lation functions are known from some other type of expe
ments, or from numerical simulations, one can predict
results of scattering experiments~the direct problem! by
evaluating integrals~5! and ~10!.

We start the summary of our results from the two-po
correlation function. The following results were obtained
our numerical calculations:

~i! The cluster-cluster aggregates~CCA’s! demonstrate a
pronounced multiscaling in the two-point correlation fun
tion with D1,D2.

~ii ! The generalized exponential~GE! cutoff function de-
scribes the numerical two-point correlation function bet
than the other models considered in this paper.

~iii ! Nevertheless, the overlapping sphere~OS! cutoff can
be used in some instances, if it is desirable to obtain a clo
expression for the optical form factorf2(q) in terms of el-
ementary functions.

Though the GE cutoff provides an excellent fit f
N;104, it may not work for largerN. We estimated that the
critical value ofN is 107. This number is probably much
larger than any practical value for clusters of nanopartic
but cannot be so large for atomic and molecular clust
Another drawback of the GE cutoff is that it does not allo
one to calculate the optical form factorf2(q), Eq. ~5!, in
terms of elementary, or, at least, commonly used spe
functions. From the practical point of view, this is not rea
important, since numerical integration is always availab
But in some instances, and especially if we want to extr
some expression forf2(q) in the intermediate region ofq,
an analytical expression may be desirable. In this case
OS cutoff can be used.

Considering the four-point correlation function, we c
conclude the following:

~i! The theoretical small-r asymptote~72!, though ob-
t
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tained from a wrong assumption, is confirmed by the num
cal data with a high precision.

~ii ! The four-point correlation function is not described b
a simple scaling behavior with a cutoff function, similar
Eqs.~23! and~47!. Instead, it can be approximated by a su
of noninteger powers ofr /Rg of the form Eq.~84!. As a
result,p4, unlike p2, does not have a universal (N indepen-
dent! small-r asymptote~compare Figs. 4 forp2 and 13 for
p4).

~iii ! The four-point correlation function can be approx
mated with high precision by sum~84! up to some maximum
value ofr ; this value ofr grows with the number of terms in
Eq. ~84!, n; for sufficiently largen, the complete function
p4(r ,N) can be approximated. The coefficients of this e
pansion are expected to be universal (N independent!, apart
from a possible weak multiscaling dependence. This w
confirmed numerically for the first two coefficients~see
Table II!.

It should be noted that for the practical purposes@calcu-
lation of the form factorf4(r )# integration according to Eq
~10! should be carried out only up to the maximum point
r for which the approximation works. It is clear that an i
tegral, Eq.~10!, of each individual term in Eq.~84! diverges
at the upper limit.

Though expansion~84! proved to be useful, we canno
rule out other possible functional forms forp4. In particular,
we can consider a model wherep4 is given by a formula
similar to Eq.~72! @or Eq. ~74! in the case of multiscaling#
where each term is multiplied by its own cutoff functio
which is expandable in the Taylors series, while the sum
the two terms is not. Another possibility is to assume that
first two terms of the expansion ofp4 coincide with Eq.~72!
or ~74!, but the higher terms contain only integer powers
r . At last, our numerical data were insufficient for quantit
tive verification of multiscaling behavior of the coefficien
ck in expansion~84!.
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APPENDIX A: MULTISCALING WITH D15D2

To illustrate that multiscaling can exist even ifD15D2,
consider Eqs.~49! and ~50! in the case ofD15D25D:

aR0
DE

0

`

xD21g2~x,N!dx51, ~A1!

aR0
DE

0

`

xD11g2~x,N!dx52. ~A2!

An evident example of a functiong2(x,N) which depends
explicitly onN, but satisfies at the same time Eqs.~A1! and
~A2! for any N, is a function with three adjustable param
eters. Let one of the adjustable parameters be an arbit
function ofN. Then the other two parameters can be fou
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from Eqs.~A1! and~A2! for any value ofN ~provided all the
functions involved are mathematically ‘‘good’’ and the sol
tion exists!.

APPENDIX B: IRREVERSIBILITY PRINCIPLE
IN THE OS MODEL FOR LARGE VALUES OF N

Mathematically, the irreversibility principle can be formu
lated as]g2@r /Rg(N),N#/]N.0 for any r . We should add
to this a condition for positive definition ofp2 and, conse-
quently,g2: g2@r /Rg(N),N#.0. The solution of these two
inequalities requires an explicit expression forx1(N),
x2(N), which, in general, cannot be obtained analytica
from Eq. ~58!. However, we can find approximate solutio
to Eq.~58! with FOS defined by Eq.~40!, in the limiting case
of largeN andD1,D2.

First, we reformulate the irreversibility principle in
more suitable way. From the general form of polynom
~57!, we notice that the inequality]g2 /]N.0 ~for any r )
can be equivalently replaced by the following two inequa
ties: ](Rgx1)/]N.0 and ](]g2 /]r ur50)/]N.0. If x1 and
x2 do not depend onN, the above inequalities lead to th
condition onx1, Eq. ~44!, obtained in Sec. III A 3.

Now we analyze the functiong2(r /Rg ,N) in the limit of
large N and D1,D2. As mentioned above, we have tw
possible branches for the solutions to Eq.~58!: x1(N) and
x2(N). The first~lower! branch is

lim
N→`

x1~N!5x1,01d~N!, ~B1!

lim
N→`

x2~N!5
~D112!x1,0

2 d~N!

~D113!x1,max
2 2~D115!x1,0

2 , ~B2!

d~N!5
6aR0

D1ND1 /D221x1,0
D112

D1~D111!~D112!2~D113!
!1. ~B3!

Substituting these expressions into Eq.~57!, we find that

lim
N→`

]g2
]r U

r50

5
1

Rg
F 1

2x2
2

2

x1
G}N12~D111!/D2. ~B4!
o

l

-

This is an increasing function ofN only if D1,D221. The
latter condition guarantees that the irreversibility principle
satisfied for the lower branch ofx1(N). If D221
,D1,D2, the curvesp2(r ,N) intersect for sufficiently large
N. In the latter case, if we consider theexactOS solution for
p2(r ,N) and gradually increaseN, we find that for a certain
value ofN the derivative](]g2 /]r ur50)/]N becomes equa
to zero. A curve with a slightly largerN intersects the pre-
vious curve at some value ofr close to zero. AsN grows, the
point of intersection moves further to the right fromr50,
and the violation of the irreversibility principle become
more apparent.

Now we turn to the upper branch ofx1(N):

lim
N→`

x1~N!5FD1~D111!~D112!2~D113!

12aR0
D1ND1 /D221 G1/D1

,

~B5!

lim
N→`

x2~N!52
D112

2~D115!
x1~N!. ~B6!

For the derivative ofg2, we have

lim
N→`

]g2
]r U

r50

}2N21/D1. ~B7!

It follows from Eq. ~B7! that the condition
](]g2 /]r ur50)/]N.0 is met. But, sincex2,0, we must
also verify thatg2 is a positively defined function. Evidently
this is not so. This function with the constantsx1 and x2
defined by Eqs.~B5! and ~B6! crosses the horizontal axis a
r5Rgx1(D112)/(D115),Rgx1. However, the minimum
value of g2 is 22/@(D112)(D115)2#, which can be very
close to zero (;20.01 forD152, for example!. In addition,
Rgx1 grows faster withN thanRg and, for sufficiently large
N, the correlation functionp2 acquires a long tail, which
extends to values ofr far exceedingRg . The violation of
positive definition ofp2 occurs in this tail wherer@Rg , and
for some practical applications can be ignored. If, howev
negative values ofp2 are not acceptable, one can redefine
OS cutoff function and truncate it at the point of its interse
tion with the horizontal axis.
.
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