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Two- and four-point density correlation functiops(r) andp,(r) are studied numerically and theoretically
in computer-generated three-dimensional lattice cluster-cluster aggrégatds with the number of particles
N up to 20 000 in application to the light scattering problem. The “pure” aggregation algorithm is used, where
subclusters of all possible sizes are allowed to collide. We find that large CCA clusters demonstrate pro-
nounced multiscaling. In particular, the fractal dimension determined from the slqpérgfat small distances
differs from that found from the dependence of the radius of gyration on the number of monacwsling
to our data, 1.80 and 1.94, respectiyeM/e also consider different functional forms fos and their general
properties and applicability. We find that the best fit to the numerical data is provided by the generalized
exponential cutoff function with coefficients depending n The latter dependence is a manifestation of
multiscaling. We propose some theoretical approaches for calculgfifrg, assumingp,(r) is known. In
particular, we find the smal-asymptote for the,(r) and verify it numerically. In addition, we find that
p4(r) cannot be represented by a scaling dependence with a cutoff functiop,(iKe Insteadp,(r) is given
by an expansion in terms of integer powersréP 3, whereD is the fractal dimension~1.8 for CCA
clusters. [S1063-651X97)14906-9

PACS numbd(s): 61.43.Hv, 71.45.Gm, 42.25.Fx

I. INTRODUCTION formation. Correlation functions are especially useful in op-
tics [4—8]. The two-point correlation function describes the
Computer algorithms play a very important role in under-average intensity of light scattered by an ensemble of clus-
standing aggregation phenomena and physical properties &#'s [5], while the four-point correlation function governs
aggregates. In many instances, computer simulation is th#uctuations in the scattered ligfs].
only feasible theoretical approach to very complex stochastic N the present paper we study the two- and four-point
aggregation processes, when traditional techniques of stati§orrelation functions in aggregates obtained by the numerical

tical mechanics cannot be applied due to strong fluctuation890rithm known as the cluster-cluster aggregatiQCA)

and the absence of equilibrium. These algorithms have at2:3:9-11. The CCA algorithm provides a very accurate

tracted much attention since Witten and Sar{dér Meakin simulation of aggregation processes which occur in nature,
under the conditions that there is no spatially fixed center of

[2], and Kolb, Botet, and Jullief8] proposed realistic algo- reqation and the concentration of reqating material i
rithms which simulate natural aggregation processes to mucfddregatio € concentration ot aggregating mate S
detail sufficiently low. These conditions are well satisfied, for ex-

' ample, for formation of fractal carbone sdéi and metallic

One of the mgstl exten;ivily us((jed fagplicqtions c}fcolloids[12]. One of the possible applications of the results
computer-generated clusters Is the study of density correlasyiainaq in this paper is a theoretical description of light

tion functions. A direct experimental measurement of thes%cattering from fractal soot clusters in the atmosphere.
functions has also been carried dgee, for example, Ref. In its most pure form, the CCA algorithm involves the
[4]), but such experiments face considerable difficultiesso|iowing steps: First, a set dff pointlike particles are ran-
First, it is hard to calculate interparticle distances from two-domly placed on a simple cubic lattice of the size
dimensional electron micrograph images of three-| x| x L. The size of the lattice is chosen so that the average
dimensional cluster4], and, second, the process of electrondensity of particlesN/L2, is much smaller than unity. Those
micrographing itself can damage the cluster structure. particles which are separated by only one lattice unit are
Density correlation functions provide important geometri-considered to be rigidly bound to each other and form a
cal characteristics of clusters, carrying valuable physical insubcluster. Ideally, in the limit of zero density, there are
initially N subclusters consisting of one particle each. Then a
subcluster is picked randomly out of the set and moved one
*Also with Institute of Automation and Electrometry, Russian lattice unit in one of the six possible directions, chosen at
Academy of Sciences, 630090 Novosikirsk, Russia. random. If, after this move, the subcluster contacts other
TAlso with the L. V. Kirenski Institute of Physics, Siberian Branch clusters) (via nearest-neighbor occupangihese subclusters
of the Russian Academy of Science, 660036 Krasnoyarsk, Russiestick together to form a larger subcluster. The steps are re-
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peated until a single cluster ™ particles is left. Periodic Concerning the four-point correlation function, we find
boundary conditions are usually assumed, which results itheoretically its small- asymptote, and confirm it numeri-
“transparency” of the boundaries of the lattice for moving cally. However, it turns out that the four-point correlation
subclusters and, on the other hand, in conservation of th&énction does not have a simple scaling form with a cutoff
number of particles. function. Instead, it can be expanded in a power series in
A great number of modifications of the algorithm exists,F>"~ >, wherer is the distance an® the fractal dimension
among which are random rotations of subclusters, prescrigfor CCA, 1.5<D<2). _
ing “mobility” to each subcluster(which is, typically, pro- The paper is organized as follows: In Sec. Il we review
portional to the inverse number of particles in this subclusihe use and definitions of correlation functions in application
ten), hierarchical models, off-lattice models, and othier]. to the static light scattering problem. In Sec. Il we discuss

Some of these modifications, such as the hierarchical modefliTerent models for the two-point correlation function and
' their properties and applicability. In Sec. IV we report some

are intended to simplify the numerical procedure, and tc{ . . :
. . ) . . _theoretical approaches for the calculation of the four-point
make it possible to generate large clusters in a feasible time

. A . o . ¢orrelation function, assuming that the two-point correlation
the price of these simplifications is sacrificing some essenti

. e unction is known. In Sec. V we describe our numerical pro-
features of real aggregation. Other modifications, such aadures for computer generation of CCA clusters and the
random rotations of subclusters, are, on the contrary, in- P 9

. . . . computation of correlation functions. Section VI contains
tended to make the algorithm more realistic, while compli- . . . i
) X our numerical results for the two-point correlation function,
cating the numerical procedure.

and Sec. VIl those for the four-point correlation function.
In the present paper we use only the pure form of th

algorithm described above, and generate three-dimensiona'na"y’ Sec. VIl contains a summary and discussion.
clusters_ with the numbgr of part_icleht. up to 20 000. For Il. CORRELATION FUNCTIONS IN OPTICS
comparison, the correlation functions in Ref4] were stud-
ied using computer-generated CCA clusters with the maxi- The two- and four-point correlation functions are essential
mum value ofN=900. Clusters with a number of particles for the description of static light scattering from fractal clus-
comparable to 20 000 have been generated eddi@rl, ters. The two-point correlation function describes the aver-
but with the use of the hierarchical mod#l], which allows age scattered light intensity, while the four-point correlation
only subclusters of the same size to collide, and considerginction describes fluctuations of the scattered light. In this
aggregation of only two subclusters at a time. Though thissection we review briefly the use and definitions of these
model was shown to produce clusters very similar to thosdéunctions as applied to the scattering problem.
obtained by the direct calculation, it evidently lacks some Here we adopt a basic assumption that the distance be-
important features of the real aggregation process. In particdween different clusters is much larger than the wavelength
lar, this model may be incapable of producing the multiscal-\, and the positions of clusters are random and uncorrelated,
ing effect (which is established for the Witten-Sander clus-so that we add up intensities of light scattered by different
ters[15]). clusters rather than amplitude@he effects of intercluster
Using the computer-generated CCA clusters with largenterference were considered in Ref6,7,16-18.) At the
N, we argue that the pure CCA model produces clusters posame time, we assume thais large compared to the size of
sessing multiscaling. A manifestation of this effect is that thea single monomer, but can be much smaller than the charac-
fractal dimension measured from the dependence of radius ééristic cluster size. We will use the ensemble-average radius
gyration on the number of particles differs from that mea-of gyration,R,, as the characteristic cluster size in this pa-
sured from the two-point correlation function at small dis- per. The root-mean-squarems) distance between mono-
tances. In this paper, we also consider different forms omers in a clusterR,s, is equal to\/ng. The hierarchy of

cutoff functions for the two-point correlation function. sizes can be schematically expressed as
A
° ) . »
monomer size cluster size (R,) intercluster distance Inr
A. Monodisperse clusters approximation for the scattering problem. In this approxima-

First, we introduce the correlation functions for the mosttion. the intensity of light scattered by timeth cluster in the
simple case of monodisperse clusters. Consider scattering gffectionk’ is proportional to the well known “structural
a plain monochromatic wave from an ensemble of randonfactor,” 1(q) [5,8,186:
fractal clusters containinyl monomers each. If the electro-
magnetic interaction at the optical frequency between mono- 2 N N
mers in a cluster is weatequivalently, if the frequency of 1,,(q)= =2 > exdig-(ri™—r{™)],
incident radiation is far from internal electromagnetic reso- =1j=1
nance frequencies of a cluskeone can use the first Born (1)

N

> explig-r(™)

i=1
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wherer("™ is the radius vector of theh monomer belonging In this paper, we are interested not only in the average
to themth cluster,g=k—k’, andk is the wave vector of the Scattered intensity, but also in a measure of its fluctuations,
incident wave. The scattering angle(the angle betweek  Which originate due to the random nature of clusters. A con-
andk’) is related to the absolute value @fby the equation ventional parameter characterizing such fluctuations is the
relative dispersiong, /(l), where the dispersiowr, is de-

fined as
q=k\2(1—cos), k=2m/\. @
The structural factot,(q) depends only on the geometry aZ=(12)—(1)2. (6)

of a cluster and the scattering angle. It does not include any

factors depending on the polarization of the incident w@ive ~Therefore, we need to calculate the average vélée For

it is polarized and scattering cross section of an individualan individual cluster(say, themth), the squared scattered
monomer that the cluster is built from. Normally, these fac-intensity is given by

tors are the same for all clusters, independent of their geom-

etry and number of particlgs8], and, therefore, can be ex- N 4
cluded from consideration. 12(q)= > exp(ig-r™)
The ensemble-average scattered intenélity)) can be i=1
easily obtained from Eq(1). Since here we consider CCA N N N N
clusters which are spherically symmetrical on average, it is _ exdig- (1M — r(m 4 p(m_ (m
clear that{I(qg)) can depend only on the scattering angle 21 121 121 ;1 Hia-(r; ! k ]

but not on the azimuthal angle. This means thatl(q)) )

depends only on the absolute valuegfGrouping together

the terms with = j andi #j in the double summatiofi), we By grouping together the terms in E() with different in-

obtain dices matching each other, and performing ensemble averag-
ing, we find that

(H@)=(1(@))=N+N(N-1)¢5(q), )
(1%(a))=N(2N—1)+4N(N—1)?¢5(q)

¢o(a) =(expliq-ryj)), 4 +N(N—=1)(N2=3N+3)¢4(q). 8

wherer;j=r;—r;, i#], and the ensemble averagifd, on  Here ¢,(q) is defined, analogously t#,(q), as
the right-hand side of Eq4) should be taken over pairs of

distinct monomers belonging to the same cluster. )

Next, we introduce the two-point correlation function b4()=(exXpliq- i), ©)
pz(r_) yvhich is defined as a probability density to find a pairwhere Fig =i +Fg=(r—1) + (1), i#], k#I, and
of distinct monomers belonging to the same cluster separateegny of thJe pai# of indicesi(jj) can coincide with any of the

by a distance. FOF cluste_rs which are spherically symr.netri.- air (k,1). The sum of all coefficients in E48) is equal to
cal on average, this function does not depend on the directioqa so that(12(0))=N*

of r. We can also define the probability density to find a

di ‘or betw W . | t of vol Now we can introduce the four-point correlation function
radius vector between two monomers in an e'ement of Vol, 1y "which is defined as the probability density to find the
umed®r asP,(r)=P,(r)=p,(r)/4=r-, so that the normal-

o I - o absolute value off;;,, in a cluster(with the above limitations
ization rule readg 4P, (r)rdr=fp,(r)dr=1. To indi- Ikl K

on indices to be equal ta. Similar to Eq.(5), we can ex-
cate the dependence of the correlation function on th‘foressm tiroughpﬁ a.0)

number of particlesN, we will also use the notation
p»(r,N) where appropriate. Using the two-point correlation .
function p,(r), and performing an integration over the spa- ba(Q)= jwp4(r) Sk LT (10)
tial angles, we obtain, fow,, 0 qr

. i Finally, the expression for the relative dispersion,
d’z(Q):f pz(r)SInqrdr' (5) a [{l), follows from Egs.(3), (6), and (8). In the limit of
0 qr largeN, we obtain

o(q) _ V(L= LN)[1+2(N—2) $5(q) + (N>~ 3N+3) 4(q) —N(N— 1) $5(q) ]
(1) 1+(N=1)¢2(q)

_ V1+2(N=2)$5(q)+ (N’ 3N+3) ha(a) ~N(N—1) $3(q)
1+ Nepy(@) |

(11)
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This limit should be understood as follows. We have set Now we turn to fluctuations. As suggested in H&f, we
1-1N=1 in the numerator of formula(1l), and can represent the intensity of light scattered by some indi-
(N=21)d,(g)=Ng¢»(q) in its denominator. At the same vidual random cluster witfN,, particles as

time, we have left unchanged the prefactors¢of, ¢,, and

#2 under the square-root sign. This is done because, for Im() =Nmdm(a), 17
q<1/Rq, ¢ and ¢, are close to unity, and the powers of whereN, andJ,, are statistically independent random vari-

N cancel out in the expression under the square root. Whep
. L ables, and
g is not small, Eq(11) simplifies to

(J(@)=((q))=1+c/q°. (18)

Then, ensemble averaging in EQ.7) results in Eq.(16).
Further, the relative dispersion of the random variable
o;/{(J), coincides with the relative dispersion of the scat-
tered intensity calculated in a monodisperse ensemble, which
Now we turn to the case of a polydisperse ensemble ofs given by formula Eg.12). The factorN¢,(q) on the
clusters. The ensemble-averaged correlation functions fadght-hand side of Eq(12) is independent oN, if g>1/R,
polydisperse ensembles depend on the probability densifibecausep,(q)<1/N in this case; see Eql4)]. It is reason-
p(N) to find a cluster with a givemN. Therefore, one en- able to assume that the factéf ¢,(q) is alsoN independent
counters an infinite variety of correlation functions, which in the above limit ofg. (It was numerically confirmed in Ref.
are difficult to classify. However, it was shown i8] that,  [8] that o-,/(J) is a universalN-independent value when
actually, we do not need to introduce correlation functionsgs 1/R,.) Now we can use Eq17) together with the sta-
for polydisperse ensembles, if the fractal dimension of thejstical independence of the variabldsand J to calculate
clusters is less than 2, amflis much larger than Ry. In- /(1) in terms ofo;/(J) and the relative dispersion of,
stead, one can express both the average scattered intensity/(N). Straightforward calculations yield
and its relative dispersion in terms of correlation functions
for some arbitrarybut large enoughN=const. We briefly o 0y crﬁ (3)?
summarize the arguments [8] below. A very useful con- m= @ W 1+7
sideration of polydispersity effects can be also foun{ili@. J
It is convenient to think of a polydisperse ensemble as ofrys formula was numerically verified i8],
a set of many monodisperse subensembles, each with its own Thus, ifD<2 andgs>1/R,, we can consider correlation
value of N (assume that in the “large” ensemble there arefynctions for monodisperse ensembles only. However, if one
many clusters with each value bf). Then, for each suben- f these inequalities does not hold, we cannot use the uni-
semble, we can use monodisperse correlation functions. parsg| asymptoté13) to calculated,(q). In this case one
particular, the two-point correlation functiomy(r), for @  needs to know the exact form @k(r), as well as the size
given value ofN, has the well-known universal asymptote gistribution of clusters. It is still possible to use the idea of
[13] subensembles to calculate the average scattering intensity

_.D-1 PR analogously to Eqg15) and(16). But if {I(q))y is a general
Po(r)=ar™"=/N, if r<Ry, (13 function of N andq, it becomes impossible to make a fac-

where a is a constant and the fractal dimension. If torization of random variables, as was done in form(da.

D<2, as it is the case for the CCA clusters, apd 1/Ry,
the integral in Eq(5) converges while the asymptof#3) is C. Optical form factors and correlation functions

still valid, and we have The optical form factorsp,(q) and ¢,(q) can be always
found by analytical or numerical integration according to
Egs. (5) and (10) if the correlation functions are known. In
some instances, it is enough to know only a smadsymp-
tote for the correlation function, as in the case of calculating
¢, whenD <2 andg>1/Ry. But in general, it is desirable
((a))n=N(1+c/gP), (15) to know the complete correlation functions. Such knowledge
would allow us, for example, to calculat®, in the “inter-
where the subscript N” denotes averaging over a suben- mediate” region ofg (qR;~1), or whenD>2. We shall
semble with a givemN. In order to find the average over the see below that the complete correlation functipnis re-
“large” ensemble, we simply perform an additional averag-quired for a calculation okp, for any q, since p, grows

(@) N1+2NGo(Q)+ N dala) — @] -
(1(a) 1+Neb(a) '

B. Polydisperse clusters

12

+1 (19

do(q)=c/Ng®, c=al(D—1)sifw(D—1)/2] (14

wherel'(x) is the gamma function. Using Eq®) and(14),
and in the limit of largeN, we find that

ing of Eq. (15) overN: faster thanr at smallr, and it takes many oscillations of
singr for integral (10) to converge.
(1(@))y=(N)(1+c/qP). (16) Due to the very complex nonequilibrium nature of sto-

chastic aggregation processes that lead to formation of fractal
The values oft andD can be found from a two-point cor- clusters, it seems impossible, in general, to find the correla-
relation functionp,(r) calculated for some fixed value of tion functions analyticallfapart from the universal asymp-
N, while Eq.(16) gives the average scattered intensity for antote (13)]. This fact adds importance to approaches based on
ensemble with an arbitrary distribution Bf. numerical simulations of aggregation and analytical approxi-
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mations of numerically calculated correlation functions. A. Models with no multiscaling
Since it is impossible to approximate numerical functions in
every detail, below we formulate some requirements for ana-
lytical functions which are intended to represent real corre- If there is no multiscaling in the system, the two-point

1. General nonmultiscaling dependence

lation functions. correlation function has the form
First, the correlation functions must have the correct 1p-1
small+ asymptote. As we saw above, this provides the cor- P2(r,N)=aN""r="“f,[r/Ry(N)], (23

rect average scattered intensity wHer:2 andg>1/R;. If
we assume scalingpower-law behavior for correlation
functions at smalt, the correct asymptote includes two con-
stants: the exponent and the structural coefficiéntapd a
in the case Opz). R.(N)=R Nl/D N> 1 24

The second requirement is the correct normalization of o(N)=Ro ' ' 249
correlation functions, which results ig,(0)=#4(0)=1.  4ndR, is a constant of the order of the minimum separation
We also require that the correlation functions have correcganveen monomers in a cluster. The functietx) describes
second moments. This provides the correct asymptote Qhe cutoff of the correlation function. It is close to unity if
¢2(q) and ¢4(q) at small q. For example, 4,(q) R /R <x<1, so that Eq(24) tends asymptotically to the
~1- (zq Rmg“/6+---  when r—0, where Rin=2R;  ynjversal scaling dependen¢k3). WhenR,< Ry, this can
=[orpa(r)dr. _ Dbe expressed ds(0)=1. For largex, f,(x) must decrease

A general requirement for any probability distribution quickly enough to allow normalization. From normalization

function whose argument is distance in space is that thef p,(r,N) and formula(24) for Ry, it follows that
probability elementp(r)dr, is invariant under scale trans-

formation of the formr—br. This requirement does not af- o -1

fect the functional form op(r) [provided it has the correct aRy fo X7 (x)dx=1. (25
dimensionality 1], but rather governs the rule for the scale

transformation of dimensional coefficients, sucheaism EQ.  another relation forf, can be obtained by calculating the

(13). . _ . i rms distance between monomeR,,s= \ERQ, by using
A specific requirement fop,(r) originates from the prin- RZ — (=

ciple of irreversibility of aggregation(see Sec. IIIA 1 ms= ol “P2(r,N)dr. This relation is

below. This principle requires that Nqp,(r,N;) %

=N,p,(r,Ny), if N;>N,. aRgf xP 5 (x)dx=2. (26)
Finally, we adduce the first three terms of the Taylor ex- 0

pansion for the optical form factorg,(q),¢4(q) near

wherea is a constant andRy(N) is the average radius of
gyration for a monodisperse ensemble of clusters, which
scales withN as

g

Given rules(25) and (26), the possible choice for the cutoff

qa=0: function is still very wide. In order to satisfy Eq&5) and
q2<r-2-> q4<r-4-> (26) with given constants, D, andR, f,(x) must have, in
do(q)=1— T”JrTS (200  general, at least two adjustable parameters. An alternative

approach(see, for example, Reff4,5]) allows f,(x) to have
only one adjustable parameter, and treats, instead, eitber
q2<ri2j> q* R R, as an adjustable parameter. We argue that a function
ba(@) =1 ——+5(rip+ 3(rijriad |, @D £,(x) with two adjustable parameters is more appropriate, as
it allows us to reproduce simultaneously such important fea-
4,22 212 tures of the actualexperimental distribution p,(r,N) as
ba(Q)— B2(q) = qI{rijria) —(rip”] ' (22  asymptote(13) and the gyration radiug4).
36 Another general property df,(x) follows from the con-
cept of irreversible aggregatiord5]. This concept can be
Here (rﬁ):Rz =2R§. From this example, we see that most directly applied to Witten-Sander clust¢i$]. Con-

rms

$4(q) differs from ¢2(q) in the fourth order ofy, if there is sider the density of monomers measured at the distance
a statistical dependence betwagnandr . from the center of the Witten-Sander aggregation process

(the “seed”). This density can be written ag(®(r,N)
=N p(2°)(r,N), where the superscript ¢)” indicates that the
lll. THEORETICAL MODELS FOR THE TWO-POINT distance is measured from the center of aggregation. Due to
CORRELATION FUNCTION irreversibility of the aggregation process, the density func-
It is well known that the fractal dimension can be derivedtion can only increase as the aggregation process goes on and
either from the two-point correlation function at small dis- the number of monomerhl increases. Therefore, we can
tances or from the dependence of the average radius of ggtate thap(®(r,N;)=p®(r,N,) if N;>N,. Obviously, this
ration on the number of monomers in a cluster. If there is nddea cannot be applied directly to the CCA clusters because
multiscaling, the two approaches must yield the same resulthe latter do not have centers of aggregation, and the two-
This is not necessarily the case if the clusters manifest mulpoint correlation functionp,(r,N), which is important for
tiscaling. Then the functional form of the two-point correla- optics, differs in its definition fromp$”(r,N). However, we
tion function becomes more complex. will see below from numerical calculations that the inequal-
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asymptote to manifest itself. This condition resultsdp-1

CCA clusters. By analogy, we can attribute this property toand, consequentl;aR5< FCS§1,D), where
the irreversibility of the cluster-cluster aggregation process,

which means that whenever a bond between two subclusters

FC&1,D)=[D(D+1)/2]°2T (D). (32

is made, it becomes stable. Application of the above inequal-

ity to Eq. (23) leads to the conclusion thag(x) must be a
monotonously decreasing function xf
The value ofaRj is fixed; it does not depend on the

Thus, the GE cutoff model can be used whef(«,D)
<aRb<F®§1,D). Note thatF®5(x,D) is a monotonously
decreasing function of and, therefore, the above interval is

choice of the unit of length, i.e., it is invariant with respect to not empty.

any scale transformation. This fact follows from Eg5),

The GE cutoff satisfies the irreversibility principle, be-

and agrees with the general requirement of scale invariancgause Eq(28) is a monotonously decreasing function. Be-

of p,(r,N)dr:

po(r,N)dr=aRgxP~Hy(x)dx, x=r/Ry.

(27)

In addition, p,(r,N)dr does not depend onN, if

r/Ry=const. The latter property can be viewed as a mani

festation of self-similarity, which is inherent only to fractal
clusters(unlike the scale invariance gf,dr, which is not
related to fractality.

If p,(r) has the form Eq(23), the optical form facto(5)

becomes a function dfR; only: ¢,(d,N)= ¢-(qRy).

2. Generalized exponential model

One of the mostly common used forms fg(x) [4,19] is
the generalized exponenti@GE)
fo(x)=exp(— ax?). (29

Note that the particular cases of simple exponenii(Q)

low, we will see that it can be not always true in the case of
multiscaling.

3. Overlapping sphere model

Another model for the cutoff function is the so-called

model of overlapping spherd®S’s) [4]. This model origi-

nates from the two-point correlation function for nonfractal
clusters of monomers distributed randomly and with no mu-
tual correlation in a spherical volume of a radiRs This
correlation function can be found analytically, and is given
by the integral

pz(r,R)=47rr2f p(r=r",R)p(r' R, (33

wherep(r,R) is the density of particlegunity if r<R and
zero otherwisg The integral in Eq(33) is equal to the vol-
ume of intersection of two spheres of radRsseparated by
the distance between their centers. The result foy, that

and Gaussiang=2) functions, which are widely used in the fo|lows from Eq.(33), is
literature[4,19], contain only one adjustable parameter, and

therefore can satisfy Eq&25) and(26) only by coincidence.
From the ratio of equations Eq&5) and (26), we find
that the constanta and 8 must satisfy
D+2)| 742
a= ﬁ (29)
B
In addition, from Eq.(25) it follows that
D+2) P2
P [F 5
aR; = oz =F°HB.D). (30)

2D/2

r{3]
B
The functionF®§B,D) on the right-hand side of Eq30)
diverges asB~Y41+2/D)P/AMDI2+1) in the vicinity of

B=0 and decreases monotonously with to its lower
bound,

FO§(,D)=DP"2*1(2D +4) P2, (31)

If the actual value o&RY is smaller than the lower bound
(31), the GE cutoff function cannot satisfy Eq&5) and
(26).

Any reasonable cutoff function must have a finite first

derivative atx=0, to provide enough space for the small-

[(3r2)/(2R®)](r/2R—1)%(r/2R+2)
0 ifr>2R.

if r<2R
pz(r,R):

(34)

The idea of the OS model is to take the cutoff function for
trivial clusters and to use it for fractal clusters. While in the
trivial case the parameters of the cutoff function are defined
by the radiusR of the spherical volume occupied by the
particles, for random fractal clusters such a parameter does
not exist. Instead, we write the cutoff function in the follow-
ing form:

(X—X0)2(X+2%0)/ (2x3)  if x=<Xq

0 if x>Xq.

fo(x)= ‘ (35

Evidently, the OS model in its pure form contains only one
adjustable parametayp. Its value can be found from the ratio
of Egs.(25) and (26):

(D+2)(D+5)]?

D(D+1) (36)

XO=

However, we must satisfy one of the Ed25 and (26)
independently. In order for this to be possible, the following
relation betweeraR> andD must hold:

D(D+1)(D+3)] D(D+1) b/2

aR; = 3 |2(D+2)(D+5)

(37
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If, by any chance, the experimental valuesagfD, and  Thus one solutioniwith X; miX1<X; mayw t0 EQ. (40) is ac-

R, satisfy Eq.(37), the OS cutoff with one adjustable param- ceptable; the second solutinith X;>X; na, either violates
eter(35) can be used. If not, one can further generalize functhe irreversibility principle or leads to negative values of
tion (35) and write P.
The value ofF °X(xy min,D) is given by

(X—X)2(X+2%)/(2X3x,)  if x=<X;

fa(x)= , (38) 1 (D+3\P2
0 if x>xq, FOS(Xl,minaD):m DTl FOXX1,maxD). (46)
wherex,; andx, are independent adjustable parameters. Sub- 5 _ _
stitution of Eq.(38) into Egs.(25) and(26) results in The values o0& R; that can be compatible with the OS model

lie in the intervalF ©(x min, D) <aR) <F XXy max D). We
note that the ratiok °(X; max, D)/F°(Xy min,D) increases

2 2
+ - : _ \Lme
_D+2 Xa(Xi~X1,0 (399  with D. For D=2, this ratio is equal to 9/5.

X (D+8)X e (D+5)K2

B. Multiscaling
aRg,:D(D+1)(D+2)2(D+3) X%_X%'OEFOS(X D) The multiscaling phenomenon is well established for
12 xP+? L=h Witten-Sander clustefd 5]. It also was recently observed in
(40) computer-generated CCA clust¢gd]. The presence of mul-
tiscaling results in a more general scaling behavior of the
12 two-point correlation function than the one specified by for-
mulas (23) and (24). In particular, the value oD defined
(41) from the asymptotic behavidd3) of p,(r,N) at small dis-
tances can differ fronD found from the dependendg4) of
12 Ry on N. However, we emphasize that it does not follow
, from D,;=D,=D that the two-point correlation function
must necessarily have the form E@3). In this paper, we
refer to multiscaling asiny deviation from the most simple
functional form Eq.(23) including, but not limited, to the
case ofD;#D,.
In this subsection we will assume that multiscaling takes
o place only in the two-point correlation function, while the
FOYXqmax D) radius of gyration obeys the simple scaling fof24) (prob-
D(D+1)(D+2)(D+3)[ D(D+1) D/2 ably with a different exponerid,). The case where the cor-
= (42) relation function and the gyration radius both demonstrate
6 [2(D+4)(D+5) multiscaling is considered in Sec. IlI B 1.

_[2(D+4)(D+5)
X107 | D+ 1)(D+2)

2(D+4)(D+5)
D(D+1)

X1, max—

wherex; must be found from Eq40). The maximum value
of FOY(x,,D) as a function ofx; is reached when
X1=X1 max» and is equal to

If it happens that the actual value aR('? is greater than the
value of FO(X1 maw D) EQ. (42), the generalized OS model _ _
cannot satisfy Eqs(25) and (26). If aRf)’ is smaller than If two different exponent®, andD, exist, the most gen-

F (X1 ma), EQ. (40) has two solutions fox;, both exceeding ©'@l functional form forp,(r,N), which has the universal
the value ofx; ¢ asymptote Eq(13), is

1. General multiscaling dependence

Theoretically, any of the two possible solutions to Egs. _aN-1/D;-1
(39) and(40) can be chosen, but in practice we need also to Po(r,N)=aN"=r 9oL 1/Rg(N).NJ, “n
satisfy the irreversibility principle which states thi(x) Rg(N):RONl’DZ, N>1, (48)

must be a positive monotonously decreasing function. Ap-

plied to Eq.(38), this requirement results in whereg,(ON)=1 for anyN (assuming thaRy>R;). Note

that sinceg,(x,N)—1 whenx—0 for anyN, it is impos-
Xo>X1/4  Oor Xo<—X4/2, (43 sible to factorizeg,(x,N) asg,(x,N)=0g,4(X)g,(N).
The two rules forg,(x,N), analogous to Eq¥25) and
where x; is positive by definition[otherwise, the interval (26), are

where cutoff(38) is defined becomes emptyUsing Egs.

39) and(43), we find the allowed interval fox; as o
(39 (43 1 aRglf Xol—lgz(X,N)dX:Nl—Dl/Dz, (49)
0

Xl,O<Xl,min<Xl<X1,maX1 (44)

where aRElfo xP1+1g,(x,N)dx=2N*"P1/Pz, (50)

2(D+4)(D+5)

2 D+1)%2 As above,aR('?l is invariant with respect to any scale trans-
X1,min= D(D+3) =X1,ma . (45)

D+3 formation; in addition, it does not depend bhby the defi-
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nitions of the constants andR,. Therefore, the only source exists. That is,8(N) grows toward infinity whenN ap-
of the dependence oN on the left-hand sides of Eq§49)  proaches some critical value, and there is no solution for
and (50) is the functiong,(x,N). larger values ofN. The critical value ofN is equal to
The valuep,(r,N)dr now is defined by [aRgl/FGE(oo,Dl)]Dz/(Dz*Dl), whereF®§(,D,) is defined
B B by Eq. (31). If D,—D;<D,, the critical value ofN can be
po(r,N)dr=aRg NP1/P2"1xP1-1g,(x,N)dx.  (51) large. In practice, we can use the GE cutoff with<D,, if
o the number of monomers is much smaller than the above
The explicit dependence @h(r,N)dr on N (apart from the  jtical value. (According to our calculations, the critical
factor x=r/R,) may be viewed as a violation of the self- yaue of N is ~10" monomers for three-dimensional CCA
similarity. However, the factoNP1/P271g,(x,N) can, in clusters; see Sec. VI B.
principle, be independent df in some region of, which If D;>D,, B(N) is a monotonously decreasing function
would mean self-similarity in the intermediate asymptote. Iny¢ N, and a solution to Eq(54) always exists. However, for
other words, a cluster can be statistically not self-similar as 3 me value ofN, 8 will become smaller than unity, and
whole, but its smaller parts of different sizes lying in the nction (52) cannot serve as a cutoff function. The charac-

regionRy<r <Ry can still be self-similar. teristic value of N in this case is [F¢§1D,)/
The optical form factop,, Eq. (5), now depends on both aRDl]Dz/(DrDz)

qRy andN. It becomes a_general funqnon O.f two vanableg \3Ve now consider the limitations which are set upon the

g andN. From the scattering perspective, this means that 'Qje endenceg(N) by the principle of irreversible aggrega-

the case of multiscaling the differential scattering cross sect—ioﬁ For tthE cu){off fugctionp it states that 9greg

tion (normalized to unity fog=0) depends not only on the ' '

dimensionless size parame®R,, but also on the number

of particles in a cluster. a(N;)

B(Ny)
< a(Nz)

B(Ny)
if N;>N,.

Rg(Nl) Rg(NZ)
2. Generalized exponential cutoff in the case of multiscaling (55

Let us consider how the model cutoff functions can be
used in the case of multiscaling. For the GE cutoff function
(28), we can assume that and 8 are functions oiN:

Using formula(48), we can rewrite this inequality as

( r )ﬁ(Nl)B(Nz) a’(Nz)N’f(Nl)/DZ

— <——momos F Ng>N,. (56
Ro a(Nl)Nf(N2>/D2 1>Nz. (56)

g2(x,N) =exp — a(N)x*M]. (52

The equations forr and 8, which follow from Eqs.(49) and

(50), are quite similar to Eqs29) and (30): By looking at the limit of r>R,, we find that B8(N,)

— B(N,) must be a negative number or zero; otherwise the

D,+2| ]AN2 expression on the left-hand side of E§6) can exceed any
F(W given number wherr/R, is large enough. Therefore, we
a(N)= '8— (53) conclude thatB(N) must be a monotonously decreasing
21“( D, ) function of N in order to satisfy the irreversibility principle.
B(N) As we saw aboveD <D, results in an increasing func-
tion B(N), which is incompatible with the irreversibility
D,+2)]P:/2 principle. However, we should note that in real clusters the
ﬂ(N)[F B(N) ) violation of this principle can occur at very large values of
aRJIND1/D2~1= SN x=r/Ry, where the theoretical cutoff is no longer valid. In-
2Dy/2 F(—l) deed, the real correlation functions become exactly equal to
B(N) zero for large values of, while the GE cutoff is always
—FSE B(N),D,]. (54) positive. This means that the real correlation function must

decrease faster for largethan any GE model can provide.

The last equation specifies the dependefiEll) implicitly. On the other hand, it should pose no difficulty for a theoret-
If D,<D,, the left-hand side of Eq54) decreases with ical description of the correlation function, since the physi-

N, and, whenN is large enough, becomes smaller than thecaIIy important integrals of the type of Eq5) converge

; ; - : h sooner than the violation takes place.
lower bound of the right-hand side, given by Eg1) (with muc . . N
D replaced byD,). This means that the multiscaling GE Lastly, we consider the particular case Dy=D,=D,

cutoff cannot be used for arbitrary largé whenD,<D,. where o and g become N-inqependent const_ants. This
However, in practice we may not need to deal with ex.means that the GE cutoff functiqh2) becomesN indepen-

tremely largeN. If the ratio |D,—D,|/D, is much smaller dent too. However, a general functigy(x,N) can depend

than unity, Eq.(54) can still have a solution for some prac- °1' N even ifD1=D, (see Appendix A As a result, multi-

tical values ofN, even ifD;<D,. ;callng can exist even ID1_=D2=D, but _the _GE cutoff is
Consider the case db,<D, in more detail. As men- incapable of describing this kind of multiscaling.

tioned above, the expression on the right-hand side of Eq.

(54) is a monotonously decreasing function®f Therefore,

the solution to this equation3(N), is a monotonously in- Analogously to Sec. Il B 2, we consider the OS model

creasing function ofN if D;<D,, provided this solution (38), with x; andx, being functions ofN:

3. Overlapping spheres cutoff in the case of multiscaling
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[X=X3(N)P[x+2X(N) [ 2X3(N)Xo(N)]  if x=<X3(N)

gz(X,N) =

0 if x>xq(N) .

The relation betweer;(N) andx,(N), Eq. (39), still holds
in this case(with D being replaced by,), but instead of
Eq. (40) we have

aRPINP1/P2~1=FOS(x, D,). (59)

Comparing this equation to its counterpart, Esf}), we can

notice the main differences between OS and GE cutoffs.
First, the functionF®§(3,D;) has a finite lower bound,

but is not limited from aboveE°Y(x;,D;) has, on the other

hand, a finite upper bound but can approach zero. Thi

means that in the OS model the value ajRglNDl’DZ‘l
must go to zero for largeN. Subsequently, the case of
D,<D, is more compatible with the OS cutoff than
D,>D, (contrary to the GE cageExactly as in the GE case,
we can still use the OS cutoff with,>D, if the value of
N is not too large. The critical value ofN is
[FOXX1 max D1)/aR; 11P2/(P17P2), whereF ©(Xy may D1) i
given by Eq.(42).

Second, in the OS model there are, generally, two pos-

sible solutions to Eq(58) which, in the case of multiscaling,
result in two possible branches of the functioffN). As we

saw above, application of the irreversibility principle leaves

only one allowed solution, namely the one WRh<X; max
if there is no multiscaling in the system. But if the multiscal-
ing is manifested, consideration of the irreversibility prin-

ciple becomes more complicated. It is shown in Appendix B

that, in the limit of very largeN and D;<D,, the upper
branch of the solutionx; <X; maxX2>0) violates the irre-
versibility  principle, while the lower branch
(X1>X1 maxiX2<<0), though satisfying the irreversibility prin-
ciple, leads to negative values pj for larger.

Finally, the OS model is incapable of describing multi-

scaling withD =D, due to the same reasons that were dis-

cussed in Sec. Ill B 2 for the GE model.

4. Model of continuous fractal dimension

The model of continuous fractal dimensi¢@FD) was
proposed in Refs[15,2Q for description of multiscaling.
The CFD was calculated numerically in REE5] for Witten-
Sander aggregates.

The two-point correlation function in the CFD model is
given by the expression

N pDIr/Rg(N)] -1
po(r,N)=aN th[ﬂRg(N)]- (59

Here D(x) is the CFD, andRy depends orN according to
Eq. (48). Since EQq.(59) must coincide with Eq(13) when
r<Ry, we require thaD(0)=D; andh,(0)=1. Note that
there is no general requirement tHa{«)=D,; at least it
cannot be deducted from the definitionsdf [Eq. (48)] and

(57)

h, [Eq. (59)]. But, as can be seen from Eq81) and (60)
(see below, a cluster becomes self-similar in the limit of
x>1 if D()=D,.

The factorR(?[”Rg('\')]_Dl in Eq. (59) provides the correct
dimensionality ofp,. In order to satisfy the dimensionality
requirement, we can us®, instead ofR, in the denominator
of Eqg. (59). But it easy to see that, in this case, E§9)
would degenerate into a nonmultiscaling dependence with
f(x) =xPX)~P1h,(x).

The functional dependend&9) is less general than Eq.
%47). The latter is, evidently, the most general form of a
unction of two variables; andN. In order for Eqs(47) and
(59) to represent the same function, the following relation
must hold:

gz(x,N)=xD(X)_DlN[D(X)_Dﬂ/DZhZ(X). (60)
Substituting this expression fa,(x,N) into Egs.(49) and
(50), we find that

aRglfo KPOO-INDOD2~ T (ydx=1,  (61)

aRglfo XD(X)+1ND(X)/D2_lh2(X)dX:2- (62)

It was shown irf15] from the irreversibility principle that
D(x) must be a monotonously decreasing function. On the
other hand, it follows from Eq.61) that the function
D(x)/D,—1 must change its sidiio prove this, consider the
derivative /0N of Eqg. (61)]. At last, we know that
D(0)=D;. These three facts are compatible with each other
only if D;>D,.

Note that in order to calculate nhumericald(x), we do
not need to know the cutoff function(x). Indeed, we can
take clusters with differen and differentR,, and choose
some value ok common for all clusters. Then the value of
r would be different for clusters with differertl, which
makes it possible to calculat®(x) from the slope of
p,(r,x=const) as a function aof.

C. Double multiscaling

In Secs. Il B 1-111 B 4, we considered multiscaling only
in the correlation function, but assumed that the radius of
gyration obeys the simple scaling dependef@®. Now we
assume that it is not so, a},(N) is an arbitrary monoto-
nously increasing function. In this case, the crucial role for
all theoretical models plays the functity 2(N)/N. We em-
phasize that the constabt; should be found from the small-

r asymptote ofp, rather than the radius of gyration.

We can still use the GE and OS models for cutoff func-
tions. Relationg53) and (39) do not change, but Eq$54)
and (58) transform to
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tend to group close to each other, forming “blobs” and
empty “holes” of all sizes, up to the maximum cluster size.

where ¢) denotes either GE or OS, and the adjustable pa- But if we considerr;; andry, as random variables, the

rameter is8 or x, for the GE or OS models, respectively. To reason for their statistical dependence is not as clear. Imagine

select an appropriate model, one should analyze how th#at we found a pair of monomers in a cluster separated by

function RDl(N)/N behaves wheiN—s o rij . The question that we have to answer is: does this fact
9 .

It is a little more difficult to use the CED model in the change the probability of finding another pair of monomers

case of double multiscaling. For this model, we need a pa§eparated by, (as compared to tha priori probability? If

rameter of dimensionality of length. As mentioned in Sec.the answer is negative, thepj andr, are statistically inde-

1153, R, camot b Lsed a5 such & prameter. because TR G0 vaaes wniel conetutes e e o
leads to degeneration of CFD into a nonmultiscaling model P PP P

) . ! : ASI).
But the parameteR, is not precisely defined in the case of ( ) : .
double multiscaling. In fact, there might be several param- egérlglinsopvﬁﬁg%oIrfrélha?i Qs;u\:]v?t? Cogfgtl‘l Vlvf dgvgdmctjhzm
eters of the dimensionality of length, which govern the de-_ "~ R : S
pendence oR, on N. However, we can choose the smallestOptlcal form factor 4,(q) could be calculazted 5|mply_ as
of them and call itR,. It can be a lattice period or a mini- (exp{a-rij)) = (exp(q- rij) {exp(q- 1)) = $3(q). ~ This

mum separation between particles, or the average distan&9Uality always holds for smadf [up to second order in,

aRng(N)/N=F(*)(adjustable parameter  (63)

from a monomer to its nearest neighlftire latter character-
istic always exists Regardless of the definition &, we
can always writeRy(N) =Ry #(N), wherey(N) is a dimen-
sionless function. Then, instead of E49), we obtain

aRglJ':Nflz//D(x)(N)xD(X)*lh(x)dx=1. (64)

Applying the derivatived/dN to Eqg. (64), we find that
that D(X)N[d¢/ IN]/—1 must change its sign as a func-
tion of x for any N. This, in particular, must be true for

see Eqs(20)—(22)]. But for largerq, it is not necessarily so.
To illustrate the above statement, consider the relative

dispersion of the scattered light given by formyk®). As

follows from Eqgs.(12) and(14), if ¢4(q)= ¢3(q), we have

[1+2c/qP
(I(@) ¥ 1+c/g®’
where the constartis given in Eq.(14). On the other hand,

it was shown numerically in Ref8] that the relative disper-
sion is very close to unity when R{<q<1/R,, and from

a(9)

(65)

N—o. If we make the reasonable assumption thatformula (65 we see that this would be true only if

0<c1<D(x)<c,<, we come to the conclusion that there
must exist a finite limit ofN[ d¢/dN]/¢y whenN—x. The
condition for such a limit to exist is that(N) is a power
function for largeN. In other wordsRy; must depend oM
according to Eq(48), at least for large values oi.

To summarize, the CFD model can be used in the case of

double multiscaling only when lig..Ry(N)=RoN*P2,
Note that this requirement follows only from normalization
of py(r,N)

IV. THEORETICAL MODELS FOR THE FOUR-POINT
CORRELATION FUNCTION

2c/qP1<1. With the use of Eq92) and(14), this inequality
translates into

2aR§lsir{(Dl—1)7r/2]/ X\ D1
[2my2(1—cos) [P \Ro

Since the prefactor forN/Ry)P! is the order of unity or
larger, the wavelength must be much smaller than the char-
acteristic separation between monom&g, in order to pro-
vide the above inequality. But this contradicts the humerical
results of Ref[8], where the value ok was chosen to be
significantly larger tharR,, but the relative dispersion was

<1.

(66)

In this section we propose a method to deduce the smalftill very close to unity for large scattering angles.

r asymptote ofp, theoretically, considering thap, is
known. The problem of the cutoff function fqu, will be
considered numerically in Sec. VII.

From a mathematical point of view, the four-point corre-

lation function p,(r) is just some probability distribution
function. It has the same normalization@gr) but a differ-
ent second moment. That is, the second momenp,ofs
(rf)=Ri,=2RZ, while the second moment op, is
<rijkl>:<(rij+rk|)2>:2Rr2ms:4R§'

A. Approximation of statistical independence

It is well known that the positions of monomers in a clus-

The above example demonstrates that the hypothesis of
statistical independence is not confirmed numericg8y.
Still, it is convenient to use this hypothesis as a starting
point. Below, we adopt the following theoretical approach:
First, we use the ASI to find the smallasymptote ofp,.
Then we show that the same smaksymptote follows from
the requirement of correct small- and largexsymptotes of
$4(q). In Sec. VII we find the higher corrections p nu-
merically.

Now we turn to the determination of the functional form
of p, in the ASI. The functiom,(r) was defined as a prob-
ability density to find the absolute value gfy =rj;+ry to
be equal ta . Since in the ASk;y, is a sum of two statisti-

ter are correlated. In other words, the information that thereally independent random variables, we can apply the gen-

is a monomer at the poimt influences the probability to find
another monomer somewhere else, say, at the ppinthe
smaller the distancl; —r|, the stronger the correlation. The

eral formalism of the theory of functions of random vari-
ables, which allows us to express the probability distribution
p(x+y=r) through a convolution of p(x=r) and

source of this statistical dependence is evident: monomeng(y=r). Herex andy are statistically independent random
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variables, and is the argument of the probability distribu- x<xg and f,(x)=0 if x>x,] and a linear cutoff
tion functions. It is more convenient to apply this formalism [ f,(x) =1—x/Xg if X<xg andf,(x)=0 if x>Xg].
to the functionsP ,,(r) =Puy(r)=pm(r)/4mr?, wherem=2 Returning to the small-asymptote ofp,(r,N), we find
and 4, andP,(r) is the corresponding probability density to that
find the value ofrj; (for m=2) orry;, (for m=4) in the
three-dimensional element of volundér: Cqr Cor
Pa(r,N)= AN 9P 212
(2D-3)N (2D-3)N

2 2D-1

when r<Ry.
Pu(r)= [ Patr—r )P (67) 72
Herec, andc, are positive constants, different frooa and
The normalization oP, follows immediately from Eq(67) ¢ used in Eq(71). _

if P, is normalized correctly. Returning to our usual nota- A similar analysis can be applied for the case of
tion, p, and p,, and performing integration over spatial D>1.5, but it is easier to start directly from formul@8) in

angles, we find that this case. Indeed, the two-dimensional area of integration in
Eq. (68) is a semi-infinite rectangular strip that is symmetri-
r(=po(r’) r+r’ Po(r’”) cal with respect to the line’ =r” and with two corners at the
p4(r)=§fo r—'dr,fn—rw [ dr”. (6 points (Of) and (,0). Whenr—0, the integral over this

area can be replaced hy2r times a one-dimensional inte-

First, we analyze the form g, in the case of no multi- gr_al _along the ling’=r" from r to infinity. WhenD>1.5,
scaling. Substituting the functiop,(r,N) in the form Eq. this integral converges and returns the result of (£8). But

(23) into Eq. (68), we find that now the first term in this expression is leading, and the sec-
ond term is the first correction, contrary to the case of
a2r2p-1 D <1.5. It should be noted that in both cases the first correc-

pa(r,N)= WY(r/Rg), (69  tion is negative.

Since we are mostly interested in the situation where
D>1.5 (CCA cluster$, we can rewrite Eq(72) as

Y(x)= fw(t’)D’zfz(xt’)dt’ft,H (t")P 72 ,(xt")dt".
o 1] br2 r\20-3
(70) Pa(r,N) = S| 1—C1 R, (73
Herefzgx) is thg nonmultiscaling cutoff for the two-point Again, ¢, is a positive coefficient. The expression in the
correlation function. square brackets can be viewed as the first two terms of an

Consider the asymptotical behavior of the integrék) expansion op, in terms of integer powers Of(Rg)zD—s_ In
nearx=0. If D<1.5, one can always chooseto be small  \inciple, we can think of a sequence of coefficientgwith
enough for integral (70) to converge while ¢ _1) which define this expansion completely. Such an ex-
fa(xt’)~fy(xt")~1. This means that lim.oY(x)=const  pansion does not coincide with the Taylor expansion. This

whenD <1.5. Though, from the mathematical point of view, can be easily seen from the example of a GE function of the
this constant is a leading term the expansionY¢kX) near  form f 4(X) = exp(— ax®®~3). The first derivative of this func-
x=0, in practice we are not always able to achieve reallyjon atx=0 is equal to— = if 1.5<D<2. A function with
small values oﬁ<=.r/Rg. Therefqre, it is deswab!e to obtain g infinite derivative ak=0, though formally satisfying the
the second term in the expansion Yfx), especially when  congitionf,(x)~1 if x<1, does not leave any space for the
D is close to 1.5 and the convergence of inted) with  ynjversal asymptote to manifest itself, as pointed out in Secs.
f,=1 is slow. Strictly speaking, the second term of the ex-jjj A 2 and Il B 2.
pansion ofY(x) depends on the form of,. This is clear Thus we have to conclude that, in the framework of the
already from the fact that the integral of the first correction toas|, the functional form ofp4(r) is more complicated than
the integrand in E¢(70) [which can be obtained with the use the simple scaling behavior of the kind of Eg3). It cannot
of f(x)=1+1"(0)x] diverges wherD>1, i.e., for any rea- e described by a scaling behavior with a cutoff that has a
sonable fractal dimension. However, we can assume that thhite first derivative at =0. Note that one of the alternative
function f,(x) decreases with faster than any power func- possibilities is to consider separate cutoff functions for each
tion of X and has a “characteristic lengthX.;~1. Then we  term in Eq.(72).
can replace the infinite upper limit of integration in the first Finally, the expression fau,, Eq.(72), is modified in the
integral in Eq.(70) by x./x while keepingf,=const, and the gse of multiscaling as
expansion ofY(x) acquires the form

cyr?

_ G C gy p4(rvN):(2D1_3)N[2(1—D1/DZ)+3/DZ]
Y(X)—3_2D 3-2p% if x—0, (71
Cerlel
where c; and c, are positive constants. While the above _(2D1—3)N2 whenr <Ry, (74)

derivation of the second term of the expansion is not math-
ematically rigorous, it turns out to be correct for two seem-where both coefficients, andc,, are different from those in
ingly different forms off,: a steplike functioff,(x)=1 if  formula(72), and can, in principle, depend &



7324 MARKEL, SHALAEV, POLIAKOV, AND GEORGE 55

B. Method of Fourier transformation V. NUMERICAL PROCEDURES

As discussed in Sec. IV A, the ASI correctly describes A. Simulation of fractal cluster aggregation
optical form factors for small values of (up to second order
in q) but fails wheng>1/R. In this section we show that it
is possible to modify the cutoff functions in Eq&9) and
(74) in such a way that the resultant correlation function
would produce correct results for large valueqadis well.

We start from the asymptotic behavior &f,(q). As fol-
lows from Egs. (200 and (21), for q<1/R,, we have
b4(Q) = ¢2(q) Forg>1/R,, we know from numerlcal cal-
culations that the relative dispersion of scattered light, give
by Eqg. (12), is very close to unity8]. As follows from Eq.
(12), this means tha,(q) = 2¢5(q) for g>1/R,. We can
write ¢, in the form

We have implemented the CCA algorithm on a simple
cubic lattice with periodic boundary conditions. We have
built 40 random clusters for each value of the number of
particles in a clusteN, except forN= 20 000, when we have
built only 20 clusters. The size of the lattite varied de-
pending onN. The following values ofL were selected:
L=200 for N=5000, L=260 for N=7500, L=300 for
N=10 000,L =310 for N=12 500,L =340 for N=15 000,
r}:\ndL=350 forN=20 000. This ensured that the density of
monomers was sufficiently low (37104 for
N=10 000), and that the cluster size was smaller than the
size of the lattice. For example, the rms distance between
_ 2 two particles in clusters witiN=10 000 was 99.4lattice

¢4(a.N)=£(qRy. N) 42(a.N) 79 units), which is substantially less than the corresponding lat-

where £(0N)=1, £(=,N)=2, and £(x,N) is a monoto- tice size. Thi_s was true r_;\lso for the largest plusters with

N=20 000, with the rms distance between particles equal to

141.7. However, we should note that due to computational
limitations, L was not proportionally large faX =20 000 in
comparison with otheN. Comparing toN= 10 000 (with
L=300), we could have expected tHat 300,22~ 424 for

N=20 000.

During the aggregation, each subcluster was moved with
equal probabilityindependently of its sizeand no rotations
were allowed. Our simulations showed that clusters of all
sizes collided during the aggregation. At approximately half
of the full aggregation time, a main subcluster was formed,
which accounted for about half of all aggregating mass,
thne the rest of the particles were aggregated in subclusters

of widely varying sizes, including single nonaggregated
monomers. Closer to the end of aggregation, one large sub-
or (e cluster and a number of small subclusters were left. This
Pa(r)= —f qé(qRy, N)¢5(q)sin(qr)dg.  (76)  aggregation pattern suggests that the hierarchical model
m™Jo [9,13], which allows only clusters of the same size to collide,
is, in principle, different from the “pure” aggregation algo-
Next, we substitute expressidh) for ¢, to Eq.(76) to ob-  rithm. A two-dimensional projection of a typical cluster with
tain a closed expression fqu,(r) in terms of py(r) and  N=15000 is shown in Fig. 1.

nously increasing function of with a finite first derivative.

It follows from formula (22) that the first two terms of the
Taylor expansion ofé(x,N) near x=0 have the form
£(x,N)~1+c(N)x*. The basic assumption of this section is
that there exists a region of 0<x<x., whereé(x,N) is
close to unity(say, |£(x)—1|< 48, where § is a predeter-
mined small constahptfor any N, where the right bound of
this region,x;, does not depend dN. This is always true if
there is no multiscaling, since both, and ¢, are functions
of qRy only in this case, and(x,N) does not depend on

Now we can use the definition @f,, Eq. (10), and make
the inverse Fourier transformation to obtain an expressio

for pu(r):

E(x,N):
" B. Numerical calculation of correlation functions
Pz(r )po(r ) N b . ) )
p4(r)—— —————dr'dr For finite lattice clusters, botlp, and p, are, strictly
rr 0 . . . . .
speaking, highly singular functions. However, if the correla-
sin(gr)sin(gr’)sin(qr”) tion function is used for calculation of some average values
X &(qRy,N) q dg. (77 (F) according to
If £(x,N)=1, the integral oveq can be taken, and we return (F)= fo F(r)pm(r)dr, (78)

to expression(68). If ¢(x,N) is a general function with the
properties specified above, integrdls7) and (68) are not
identical. However, it is easy to show that the srmalis-
ymptote of the right-hand part of E¢¢7) coincides with Eq.
(72). The mathematical arguments here are quite similar t
those used in Sec. IV A. Since the asymptotic behavior of

. . 1 1 (r+d2
P4 at smallr |s_determ|ned by large values D‘f_ andr”, the Pr(r)— _J pr(r)dr’. (79
integral overq in Eq. (77) would converge whil&~1. Ac- 6Jr-
cording to the assumption made above, a finite region where
&~1 exists for anyN. In this case the first two terms of Below, we will use the notatiop,, for the smoothed func-
expansion ofp, nearr=0 do not depend on the form of tion.
£(x,N), and coincide with those in the ASI. But the higher The natural choice for the consta#tin Eq. (79) is the
corrections tqo,(r) differ, of course, from those in the ASI. lattice unit. If we choosé to be less than the lattice unit, the

and the functionF(r) changes slowly enough, we can re-
place the exact functiop,, by some “smoothed” function
@ccording to
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FIG. 2. Lattice density functiom(r).
N:Fllgbold Two-dimensional projection of a typical cluster with the spherical shell —1/2<r’<r+ 1/2 with the center at the
origin. Evidently, this function becomes close to unityras

resultant functiorp,, fluctuates strongly at small distances, 9r0Ws, but for smalr it can significantly differ from unity
and if we chooses to be larger than the lattice unit, we lose (S€€ Fig- 2 Then we define the corrected correlation func-
precision at large distances. tion as

We have set the lattice unit and the valuesab be equal
to unity. We calculated the functigoy(r) for integer values @m(r)=pm(r)/v(r). (82)
of r beginning withr=1 [p,(0)=0 by definition by enu-
meration of all possible pairs of particles in each cluster. FoSincer(r) looks much like a statistical noise and is unity on
calculation ofp,(r), it was computationally impossible to average (see Fig. 2, we can assume thafjendr
enumerate all possible combinations of indiégg, k, and = fgpm(r)dr, which means that normalization is conserved
[, since the number of such combinations is proportional tdy procedurg82). In Fig. 3 we compare the original func-
N*. Instead, we picked a fixed number of index combinationgion p,(r) and the modified functiom,(r) for an ensemble
at random. To ensure statistical reliability of calculations, theof 40 clusters witiN=10 000.
number of random combinations was set te 20° for each

cluster, irrespective dfl. However, this number i_s st_iII much VI. NUMERICAL CALCULATIONS:

;maller than the number .of all possible combinations, even TWO-POINT CORRELATION EUNCTION

in the smallest clusters witN=5000. . .
Even after smoothing according to E9), the correla- A. Small-r asymptote and fractal dimension

tion functions of a lattice cluster possess some random ir- Tnhe small asymptote op,(r,N) is illustrated in Fig. 4,
regularities, which are more pronounc_ed at small d|§tance\§,here the lattice-corrected functiae,(r,N) is plotted for
and may seem to be random but are, in essence, artifacts giferent values oiN. We also show the theoretical asymp-
the lattice on which the cluster was built. The origin of these;;o (13) in this figure. The numerical values of constaats

irregularities is that the density of sites of the lattice itselfanle were found from the linear regression. Table | shows
(measured at a certain distance from the origin and averaggfle resuits fom andD, for different values oN. In the third

over angleshas certain fluctuations which disappear at large.olumn of the table, we specify the range ofwhere the

distances, where the discrete structure of the lattice IS Nfeq regression was used. This range was determined for
longer of importance. To eliminate these irregularities in theeachN from the condition that a double-log plot of the func-
tion p,(r,N) demonstrates no visually apparent deviation
from a straight line, apart from random fluctuations. For this

purpose, a plot was made in a square frame for ddch

correlation function, we suggest using the following proce-
dure: First, we define the density of lattice sitgs) as

V(1) =ANp(N)/V(r), (80) starting from the minimum value af and ending with the
4 maximum value, and the vertical range of the plot was cho-
_xm 3 3 sen from the condition that the line started in the lower left
v(r) 3 [(r+2/2)%=(r=1/2)7, (81) corner of the frame and ended in the upper right corner

(these graphs are not showiThis method of selecting a
where the variable takes integer values beginning from range forr is, of course, not precise, since it relies on visual
r=1, andAN«(r) is the number of lattice sites which lie in interpretation. For example, the ranges f#10 000 and
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TABLE I. Constantsa andD,, determined by linear regression.

Using p, Using g,
Nx103 Ry Interval of r a D, a D,
5 49711 [3,15 4.3+£0.5 1.74-0.04 4.070.06 1.7710.006
10 70.3:1.4 [3,30] 4.2+0.2 1.770.01 4.16-0.05 1.776-0.004
15 84.1-1.6 [3,30] 3.9£0.2 1.80:0.01 3.8%-0.01 1.804-0.001
20 100.2£2.3 [3,40] 3.8+0.1 1.82-0.01 3.75-0.02 1.822-0.002

15 000 appeared to be the same. However, for larger valueglues ofa and D; found from the linear regression of
of N it was possible to choose a range fowith stronger  ¢(r,N=15 000) were used for the theoretical line shown in
confidence. Fig. 4. Below, we will adopt the numerical valuas- 3.9 and

The statistical errors shown in Table | are at the level ofD,=1.8. Another result which can be seen from Table | is
one standard deviation. These errors represent only the urthat the use of the lattice-modified functign(r,N) allows
certainties associated with the linear regression procedures to increase the precision of linear regression coefficients,
they do not reflect any errors associated with the fact that thespecially for smaller values df.
number of clusters was finite. However, we believe that the  Now we turn to the dependené®(N) and to determin-
latter factor is insignificant, since the smalhsymptote was ing the constantR, andD, (see Fig. 5. We have found that
reproduced with a very high precision for different en- Ry=0.61+0.08 andD,=1.94+0.06. Again, the errors are
sembles of clusters. shown at the level of one standard deviation. We see that the

Now we return to the discussion of numerical resultsdifference betweerD; and D, is more than two standard
demonstrated in Fig. 4 and Table I. First, we see that th@leviations ofD, (the uncertainty oD, is too small to be
universal asymptot€l3) describes the behavior @h(r,N)  considereyl This is strong evidence in favor of multiscaling.
with high precision wherr <R,. This precision is even Now we can calculate the value of the important constant
more apparent if we consider a figure analogous to Fig. 4aR51:
but showingNp,(r,N) instead of Ng,(r,N) and with a
strong magnification of the region<20 (not shown. In arRPi~16. (83)
such a figure, we would see that the poihtg,(r,N) for 0
r =const, and different values &f coincide with a precision
which by far exceeds the random-lattice-related fluctuations. B. Cutoff functions for p,

On the other hand, the data of Table | suggest that there is
a weak but systematic dependence of the constarasd
D, on N. This fact contradicts, in principle, the idea of a
universal small- asymptote. However, it has a simple expla-
nation: If N is not large enough, the interval of in which T T T T o) o
the universal asymptote is valid shrinks. Though we tried to L QEEJ ]
use values of which are much smaller thaRy in our cal-
culations, we did not know how strong this inequality should
be in practice. Due to computational limitations, we were not 201
able to make this inequality as strong, for example, as two
orders of magnitude. The radius of gyration was ori$0
for N=5000 and~ 100 for N=20 000. On the other hand, it
is possible that ifN is not large enough, and the strong in-
equality 1<r <Ry is not achievable, the interval where the
universal asymptote is valid shrinks to a point. This would
mean that the functiomNg,(r,N) plotted in a double-log
scale as a function of would always deviate from a straight ~ 0.001
line, curving toward the lower right corner of the frame,
though this tendency might not be visible to the eye.

First, we consider the GE and OS cutoff functions. We
start the discussion from the nonmultiscaling perspective. As

We believe that the best values@fandD, are those for L r [lattice units]
N=15000. The data foN=20 000 cannot be so precise, i ] L
because, due to computational limitations, we were not able 1 10 100
to make the lattice size appropriately largéit should have
been larger than 400, but we were able to use350). In FIG. 3. Comparison of the originad,(r) and corrected,(r)

addition, the data foN=15 000 have the best precision. The correlation functions foN= 10 000.
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FIG. 4. Numerically calculated functiddg,(R,N) for different
N and the theoretical asymptot#3) with a=3.9 andD=1.8.

shown in Sec. Il A2, the condition of applicability of the
GE model is FOw»,D;)<aR0:<FC®¥1D,), where
FC§,D,) andF®E(1,D,) are given by Eqs(31) and(32).
Using the value ofD; found in Sec. VI A, we find that
FC&,D;)~0.49 andFC®51,D;)~2.47. We see that the
above inequality is fulfilled for the GE cutoff.

For the OS cutoff, the condition "Xy min,D1)
<aRY!<FOY(Xy maoD1) (s€e Sec. Il A3 Using Eqs(42)
and (46), we find that FO(Xymn,D1)=0.75 and
FOX(X1 may) = 1.29. Therefore, the condition for the OS cutoff

T —— r
R,(N) [lattice units] Numerical calculations F—
RONI Dy ____
100 | /I’ i
e 4
/I/
/I/
x
/I/
7t N N
10000

FIG. 5. Radius of gyration as a function df and theoretical
formula (48) with R,=0.61 andD,=1.94.

0.276+0.002 and 2.490.01, respectively. In principle, the
conditions of minimizingy? and preserving the second mo-
ment of the distributiofEgs. (53) and(54)) are different in
their nature, and should not lead necessarily to the same
results. In our case, it turned out that the solution to E5(3.
and (54) provides at the same time the best fit to the experi-
mental cutoff curve within the framework of the two-
parameter GE cutoff model.

The GE cutoff functions for two different values Nf are
shown in Fig. 7. The corresponding valuesmfand 8 for

is not fulfilled. This means that we cannot find a set of pa-N=5000 are 0.344 and 2.23&om numerical solutions to

rameters for the OS cutoff function that would correctly re-

produce the gyration radius and the smraisymptote simul-
taneously.

Egs.(53) and(54)] and 0.356:0.003 and 2.180.02 (from
the best fit. The analogous data fdd=15 000 are given
above. Note thaB(N) is, indeed, an increasing function of

The above consideration was based on the assumptidd, as shown theoretically in Sec. Ill B 2, for the case of

thatD,=D;. If this is not the case, we must replwﬁ?l by
aRPINP1/02-1 in the corresponding inequalities. Since
D;<D,, the inequality for GE cutoff is fulfilled only for
N<Nma, Where Npu=[aR>YFC&c0,D,)]P2/(C2=P1)]

~1.3x10°. Thus we see that the GE cutoff can be used in

the case of multiscaling iIN<N,,,. For the values oN
used here, this inequality is well fulfilled.

For the OS model we have a contrary situation. The con-

dition FOX(Xy min,D1) <aRGINP1/P21<FOY(x, . D,) is
not fulfilled for N~1, but becomes fulfilled folN;,<N
<Nmaxa Where Nmin:[aRoDl/FOS(Xl,maxvDl)]Dzl(DziDl)
~20 andN o= [aRS Y FOX(Xy fmin, D) 1°2/(P2~P0~36 000.

As a result, in the case of multiscaling, the conditions for the

OS and GE models are fulfilled for the valued\bstudied in
this paper(from 5000 to 20 00D

The GE and OS cutoff functions fod= 15 000 are shown
in Fig. 6. First, we discuss the GE curve. The values afhd
B found from the numerical solution to Eq&3) and (54)

are equal to 0.273 and 2.489, respectively. It is interesting to

note that the values at and 8 obtained from the best fit to
the experimental curveminimizing x2), which is depicted in

D,<D,. A systematic dependence®@f(x,N) onN which is

1.2 T T T T

gz(gp7 N) Numerical calculations
E cut-off

OS cutoff; upper branch ----

0Ss cutoﬂz; lower branch ----- —

N = 15,000 .

-0.2 1 1 1 1

FIG. 6. Comparison of GE and OS cutoff functions for

Fig. 6 by circles, came out very close to the above numbersx=15 000.
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FIG. 9. OS cutoff functions with coefficients determined from

apparent from Fig. 7 confirms the multiscaling nature of theEgs.(49) and(50) and from the best fit, compared to the numerical

two-point correlation function.

Theoretically, the GE cutoff functions wittb;<D,
violate the irreversibility principle. More specifically, in-
equality (55) is violated for all values of larger than some
critical value. But in practice, such a violation happens for
extremely large values of. This is illustrated in Fig. 8,
where we plot both sides of inequalitf55 as func-
tions of r, with N;=15000 andN,=5000. The inter-
section of the curves occurs atz[a(Nz)Rg(Nl)(Nl)/
a(Nl)Rg(NZ)(NZ)]1’[B(Nl)‘ﬁ(N2)]. Given the above numeri-
cal values ofN;, N,, a, andp, the critical value ofr be-
comes equal te-2.3x 10%, which is more than two orders of
magnitude larger than the gyration radius féy=15 000.
Evidently, the experimental functiop,(r) is exactly equal
to zero for such a large, and the GE cutoff function is

1010

108

108

10*

102

1072

104 r [lattice units] o

1
10%

103 10* 108

FIG. 8. lllustration of violation of the irreversibility principle by
the GE cutoff functiongsee inequality(55)].

data.

negligibly small. As a result, the irreversibility principle is
satisfied by the GE cutoff for all physically reasonable values
of r.

Now we turn to the OS cutoff. The values of parameters
X, andx, found from the numerical solution to Eq89) and
(40) are equal to 3.032 and 0.825, respectively, for the upper
branch &,>0) and 6.831 and-2.103 for the lower branch
(x,<0). First, as seen in Fig. 6, the lower branghith
X»><<0) provides a very poor fit to the experimental curve.
Therefore, we will not discuss the lower branch here. The
upper branch provides a fair fit, but not as good as the GE
model. The constants, andx, found from the best fit to the
experimental curve are 2.810.02 and 0.610.02, respec-
tively, which are close to the corresponding values shown
above(but not as close as we had it for the parameteesd
B in the GE model The difference between the two OS
cutoff functions[one with constants found from the solution
to Egs. (39 and (40), and the other with constants found
from the best fif is shown in Fig. 9. We see that the second
set of constants provides a better fit to the experimental
curve forx<2; however, using these constants would result
in a wrong value oRy.

If one is not interested in the smajl-asymptote of the
optical form factorg,(q), Eqg. (5), it can be appropriate to
use the OS cutoff with the constantg and x, found from
the best fit. The advantage of using the OS cutoff function is
that it allows us to take integrdb) in terms of elementary
functions.

As shown in Sec. Il B 3, selection of the upper branch of
the solution forx;(N) can lead to violation of the irrevers-
ibility principle for sufficiently large N, if D,—1<D;
<D,. ThoughD1 actually lies in this interval, the values of
N used in this paper are not large enough for the violation to
take place. To illustrate this, we plotted the density functions
Np,(r,N) for different values oN, using the OS cutoff with
the parameters,; andx, found both from Eqs(39) and(40)
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FIG. 12. FunctiorD(x) calculated numerically with uncertain-

FIG. 10. Numerical two-point correlation functions for different ties of linear regression at the level of one standard deviation.

N compared to the OS model functions with coefficients determineqiOn to Egs.(53) and (54). In general, we can state that the
from Egs.(49) and(50) and from the best fit quality of fit is much better in the GE model. This fact sup-
ports the experimental data pf,19|, where the cutoff func-
and from the best fit. We see that the irreversibility principletion was found to be close to Gaussig 2). For example,
is not violated in both cases. We also show correspondinghe value ofg found in this paper was=2.2 for N=5000.
numerical curves in Fig. 10, which allows one to visualize  Finally, we briefly discuss the CFD model. It was shown
the quality of fit of the actual correlation functiortgather  in Sec. Ill B 4 that this model is incompatible with the irre-
than the cutoff functionsin the OS model. From comparing versibility principle if D;<D,. However, the question of
the curves in Fig. 10, a conclusion can be made that th@ow large the value af/Ry should be for the violation of the
quality of fit increases withN. ireversibility principle to take place is open. As we saw for
Analogous data for the GE model are shown in Fig. 11. Inthe example of the GE cutoff, this violation can happen for
this figure, we do not show the curves with parameters devery large values of /R, which is not an essential draw-
termined from the best fit, since they are practically indistin-pack of the model.
guishable from the curves with parameters found from solu- Technically, we can calculate the functid(x) using
ensembles of clusters with differedt by considering the
function p,[r,N(r)], where N(r) is determined from

g

I | 1
140 o, ) P2 000 from edvations B e — r/Ry(N) =x= const. If this function, plotted on a double-log
N =15,000; numerical calculations o scale, looks like a straight line, we can conclude that the
N = 5,000; numerical calculations 4 . . L.
120 b 1 CFD model is correct. A mathematical measure of deviation
of a curve from a straight line is the uncertainty of linear
oo, regression coefficients. If this uncertainty is comparable to
100 = : T the coefficients themselves, the curve cannot be considered
s R as a straight line. In Fig. 12 we show the functibr{x),
80 | / ' . calculated as a coefficient of linear regression, together with
: its uncertainty. Though it is difficult to make a definitive
60F o ceny " . conclusion, the uncertainties &f(x) are fairly high, at the
s " ’ level of 10% on average. For comparison, we would obtain
40 - F ‘\ _ this level of uncertainty, if we try to approximate the func-
/ N tion y(x)=x?> by a linear function in the interval
20 | . v 4 xe[0,10.
.
o ! L Mt 2. VIl. NUMERICAL CALCULATIONS:
0 50 100 150 200 250 FOUR-POINT CORRELATION FUNCTION

r [lattice units]

The smallr behavior ofp,(r,N) is illustrated in Fig. 13.
In this figure we plotted numerical curves,(r,N) for dif-

FIG. 11. The same as Fig. 10, but for the GE model function.ferentN along with the theoretical asymptoté&). The co-
The coefficients determined from Eq#9) and (50) and from the  efficientsc, andc,, defined by Eqs(72), were found from
best fit practically coincide. the best fit and are shown in Table Il
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oa(r, N) Numerical calculations
10(r, N) ----
0.005 |- -
10° N =15,000
R
0.004 \\ i
‘\
A
\\
10* 0.003 |- \ -
}
1
\
1
Numerical N = 10:00(] : 0.002 |- ! .
103 resu]lts: N=15000 o _ '
N =20000 - .|
Theoretical formula (72) !
0.001 [ I 8
r [lattice units] '
102 el e ] r [lattice units]
1 10 100 0 1 1
0

100 200
FIG. 13. Smallr asymptote ofp,(r,N). Numerical data are

300
compared to the theoretical formul@2).

FIG. 14. Comparison of the numerically calculated function
. ) p4(r,N) and expansioii84) for N=15 000 anch=10. The coeffi-
To obtain the data of Table II, the interval ofwas se-

cientscq, ..., ¢, are found from the best fiiminimization of
lected as follows: First, an arbitrary interval was taken, start?).
ing atr =1 and ending approximately near the maximum of
p4(r). Then the coefficientg; andc, were calculated by
minimizing x? in this interval. Next, the right bound of the . . :
interval was decreased gradually, with the valueg0fnd and, in particular, in the.area where-R,, one can gener-
c, calculated at each step, until they became constams alize Eq.(73) and approximate,(r,N) by sums of the form
dependent of the right bouhavithin the precision of calcu-
lation. It can be seen from Fig. 13 that the theoretical asymp- N
tote (72) is reproduced with great precision. We emphasize _ br? K
that both terms i1{72) are important for a good fit. However, Sn(rN)= [\Wﬁgo (=)
the relative significance of the second term decreases with
N. We can also conclude that®p,(r,N) is not a universal
function (i.e., independent ofN) when r<R,, as is
Npo(r,N). Instead, there exists a universal
|imr/Rg_,0|imN_mN2p4(l’,N)=Cll’2/(2D1

In order to obtain a better fit g, for larger values of

¢ \k2D-3)

g

> wherecy=1 andc, are coefficients different from the coef-
imit: fiientsc, andc, used in Table Il above. We emphasize that
—3). The condi-

) ) _ this particular expansion qf, is anticipated to have univer-
tion N—< is rather strong, as seen from the numerical resa (independent oN) coefficientsc,, apart from a possible

sults. We can see from Fig. 13 that the curves foryeak multiscaling dependence, as demonstrated in Table |
N=15000 and 20 000 are still distinguishable. T_he weaks, ¢, andc,. Any expansion ob,, in terms of other powers
dependence of the coefficientsandc, onN can be viewed r/Ry would have coefficients which depend strongly on
as a_result of multiscaling. However, it is "T‘po”a“t to em-y, and, therefore, are not useful in practice. Also, expansion
pha5|ze that the depende_ncecgfandcz onN is very weak 84) is, in principle, different from the Taylor expansion,

in Table . We.exp_ect this dependence to be much strongei[ince the first derivative of the ratio of its first two terms is
for any expansion in terms of Ry other than Eq(72).

infinite. As a result, an integer power polynomial ifR,
TABLE Il. Coefficientsc, and c, defined in Eq.(72) found will not provide a good .flt top,. For the same reason, we
from the best fit. cannot represemnt, as a'S|mpIe power fgnchon Wlt.h a cutoff.
An example of functiors,, Eq.(84) with n=10 is shown
c, in Fig. 14. The coefficientsq, . .. ,c1o were found from the
best fit. Practically, the best-fit algorithm was performed as
follows: We calculated four coefficients at a time. The first
[1,15 13.45+0.02 18.72-0.06 two of them were known from Table Il. The next four coef-
ficients were calculated in the interval 0f0,120 by mini-
10 [1,30] 14.40+0.01 19.18-0.02 mizing x2. Then the values of coefficients, ... ,ce were
considered to be fixed, and we calculated the remaining co-
15 [1,40] 14.61+0.01 19.04-0.02 efficients in the same interval of Figure 14 demonstrates
an excellent fit up to =160. Highern can be used if it is
desirable to fitp, at larger values of.

Though it is tempting to use a GE function fpy, e.g.,

Nx103 Interval of r Cy

20

[1,50] 14.756=0.004 19.210.01
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br? tained from a wrong assumption, is confirmed by the numeri-
Pa(r,N)= NWD—leXF[—a(r/Rg)ZDl_s]: (85  cal data with a high precision.

(i) The four-point correlation function is not described by

the coefficients, calculated using the best fit do not support @ Simple scaling behavior with a cutoff function, similar to
this choice. The above function has only one adjustable paEdS-(23) and(47). Instead, it can be approximated by a sum
rameter. Unlike the GE functions studied in Secs. Il A 2 and®f noninteger powers of /R, of the form Eq.(84). As a
Il B 2, function (85) has a fixed power of/Ry in the expo- result, p,, unlike p,, does not have_a universal (indepen-
nent. dend small+ asymptote(compare Figs. 4 fop, and 13 for
Pa)-

(i) The four-point correlation function can be approxi-
mated with high precision by suf®4) up to some maximum

The correlation functionp, and p, studied in this paper Vvalue ofr; this value ofr grows with the number of terms in
are important for an interpretation of scattering experiment&d. (84), n; for sufficiently largen, the complete function
when the geometry of scattering objects is similar to that of4(r,N) can be approximated. The coefficients of this ex-
cluster-cluster aggregates, and the first Born approximatiopansion are expected to be universdlifidependent apart
can be used. In particular, the two-point correlation functionffom a possible weak multiscaling dependence. This was
p, defines the angular dependence of the average scatteriggnfirmed numerically for the first two coefficientsee
intensity according to Eq$3)—(5). In order to describe fluc- Table 1.
tuations of the scattered intensity, one needs to employ, in It should be noted that for the practical purpogesicu-
addition, the four-point correlation functigm, [see formulas lation of the form factorp,(r)] integration according to Eq.
(8), (10), and (11)]. The optical form factorsp, and ¢,  (10) should be carried out only up to the maximum point of
defined by Eqs(4) and(10) are experimentally measurable. T for which the approximation works. It is clear that an in-
It is important that the correlation functions, which carry tegral, Eq.(10), of each individual term in E¢(84) diverges
information about the geometry of scattering objects, car@t the upper limit.
always be calculated by the Fourier transformation if the Though expansiori84) proved to be useful, we cannot
form factors are knowrithis constitutes the solution to the rule out other possible functional forms fpy. In particular,
so-called inverse problemOn the other hand, if the corre- We can consider a model whep is given by a formula
lation functions are known from some other type of experi-similar to Eq.(72) [or Eqg. (74) in the case of multiscaling
ments, or from numerical simulations, one can predict thevhere each term is multiplied by its own cutoff function,
results of scattering experimentthe direct problem by  Which is expandable in the Taylors series, while the sum of
evaluating integral$5) and (10). the two terms is not. Another possibility is to assume that the

We start the summary of our results from the two-pointfirst two terms of the expansion gf, coincide with Eq.(72)
correlation function. The following results were obtained inor (74), but the higher terms contain only integer powers of
our numerical calculations: r. At last, our numerical data were insufficient for quantita-

(i) The cluster-cluster aggregatéBCA’s) demonstrate a tive verification of multiscaling behavior of the coefficients
pronounced multiscaling in the two-point correlation func- Cy in expansion(84).
tion with D;<D,.

VIll. SUMMARY AND DISCUSSION

(ii) The generalized exponentiéBE) cutoff function de- ACKNOWLEDGMENTS
scribes the numerical two-point correlation function better _ _ _
than the other models considered in this paper. This research was supported in part by the U.S. Environ-

(iii ) Nevertheless, the overlapping sphé@s) cutoff can ~ mental Protection Agency under Grant No. R822658-01-0,
be used in some instances, if it is desirable to obtain a close@nd by the National Science Foundation under Grant No.
expression for the optical form factab,(q) in terms of el- DMR-9500258.
ementary functions.

Though the GE cutoff provides an excellent fit for APPENDIX A: MULTISCALING WITH D,=D,

N~10% it may not work for largeN. We estimated that the

critical value ofN is 10. This number is probably much  To illustrate that multiscaling can exist evenDf =D,
larger than any practical value for clusters of nanoparticles¢onsider Eqs(49) and(50) in the case oD, =D,=D:

but cannot be so large for atomic and molecular clusters.

Another drawback of the GE cutoff is that it does not allow o[” . p-1 _

one to calculate the optical form factar,(q), Eq. (5), in aRy JO X" 7g2(x,N)dx=1, (A1)
terms of elementary, or, at least, commonly used special

functions. From the practical point of view, this is not really "

impqrtant, siqce numerical integrqtion 'is always available. aRgf xP+1g,(x,N)dx=2. (A2)
But in some instances, and especially if we want to extract 0

some expression fop,(q) in the intermediate region af,

an analytical expression may be desirable. In this case th&n evident example of a functiog,(x,N) which depends

OS cutoff can be used. explicitly on N, but satisfies at the same time E@a1) and
Considering the four-point correlation function, we can(A2) for any N, is a function with three adjustable param-
conclude the following: eters. Let one of the adjustable parameters be an arbitrary

(i) The theoretical small- asymptote(72), though ob- function of N. Then the other two parameters can be found
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from Eqgs.(Al) and(A2) for any value ofN (provided all the  This is an increasing function & only if D;<D,—1. The
functions involved are mathematically “good” and the solu- latter condition guarantees that the irreversibility principle is

tion exists. satisfied for the lower branch ofk;(N). If D,—1
<D;<D,, the curve®,(r,N) intersect for sufficiently large
APPENDIX B: IRREVERSIBILITY PRINCIPLE N. In the latter case, if we consider tegactOS solution for
IN THE OS MODEL FOR LARGE VALUES OF N po(r,N) and gradually increasid, we find that for a certain

. . . o value ofN the derivatived(dg,/dr|,—q)/dN becomes equal
Mathematically, the irreversibility principle can be formu- 1, a0 A curve with a slightly largeN intersects the pre-

lated asdg[r/Ry(N),N]/9N>0 for anyr. We should add ;55 curve at some value ofclose to zero. A§ grows, the
to this a condition for positive definition qﬁz and, conse- point of intersection moves further to the right fram0,
quently, gz ga[1/Ry(N),N]>0. The solution of these tWo 5nq the violation of the irreversibility principle becomes
inequalities requires an explicit expression fag(N), more apparent.

X»(N), which, in general, cannot be obtained analytically  Now we turn to the upper branch &f(N):

from Eq. (58). However, we can find approximate solutions

. OS . . . g
to Eq.(58) with F~> defined by Eq(40), in the limiting case Dy(Dy+1)(Dy+2)%(D, +3)] 2P

of largeN andD;<D,. lim x;(N)= 5 - ,
First, we reformulate the irreversibility principle in a N— 12aR;*NP1/P2~1
more suitable way. From the general form of polynomial (B5)
(57), we notice that the inequalityg,/dN>0 (for anyr)
can be equivalently replaced by the following two inequali- D,+2
ties: d(Rgx1)/dN>0 and d(dg,/dr|,-o)/IN>0. If x; and lim X5(N)=— mxl(N). (B6)
X, do not depend oM, the above inequalities lead to the N—o 1
condition onx,, Eq. (44), obtained in Sec. Il A 3. I
Now we analyze the functiog,(r/Ry,N) in the limit of For the derivative of,, we have
large N and D;<D,. As mentioned above, we have two
possible branches for the solutions to E§8): x;(N) and lim 992 o — N-1P1 (B7)
X5(N). The first(lower) branch is New OF - '
lim x5 (N) =X, o+ S(N), (B1) It follows from Eq. (B7) that the condition
N—oo ’ 3(d9219r|,—o)/dN>0 is met. But, sincex,<0, we must

also verify thatg, is a positively defined function. Evidently,
this is not so. This function with the constants and x,

2
lim x,(N) = (D1+2)x1,06(N) (B2) defined by Eqs(B5) and(B6) crosses the horizontal axis at
Noso (D1+3)X] max— (D1 +5)X1’ r=Rgxy(D;+2)/(D;+5)<Ryx;. However, the minimum
value ofg, is —2[(D;+2)(D;+5)?], which can be very
142 close to zero £ —0.01 forD; =2, for examplé. In addition,

1,0
Dy(D;+1)(D;+2)?(D;+3)

GaRcE;lNDllDz 1XD, RyX1 grows faster withN thanR, and, for sufficiently large
N, the correlation functiorp, acquires a long tail, which
o ) ) . extends to values of far exceedingR,. The violation of
Substituting these expressions into E5j7), we find that positive definition ofp, occurs in this tail where>R,, and

for some practical applications can be ignored. If, however,

o(N)=

<1l. (B3

d 111 2 negative values gb, are not acceptable, one can redefine the
. 92 _ 1—(D;+1)/D, 9 > 2 P X Lo

lim ar Rl2g X N . (B4 0S cutoff function and truncate it at the point of its intersec-
N=o r=0 Y tion with the horizontal axis.
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