
PHYSICAL REVIEW B 84, 155460 (2011)

Quantum theory of the electromagnetic response of metal nanofilms
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We develop a quantum theory of electron confinement in metal nanofilms. The theory is used to compute
the nonlinear response of the film to a static or low-frequency external electric field and to investigate the role
of boundary conditions imposed on the metal surface. We find that the sign and magnitude of the nonlinear
polarizability depends dramatically on the type of boundary condition used.
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I. INTRODUCTION

The recent explosion of growth in the field of
nanoplasmonics1–5 has been a joint success of theory and
experiment. Yet, in certain respects, theory is lagging behind.
One profound theoretical question, which has not received
adequate attention so far, is related to the applicability
of macroscopic theories. That is, the theory of plasmonic
systems is almost exclusively based on the macroscopic
Maxwell’s equations, even though the samples involved are,
in some cases, only a few nanometers in size. The problem
is compounded by the fact that plasmonic applications utilize
highly conductive noble metals. In this case, the mean free path
of the conduction electrons, which can be significantly larger
than interatomic distances, becomes of primary importance.
Several different approaches to accounting for the finite-size
and quantum effects in nanoparticles have been proposed.6

However, finite-size-dependent electromagnetic nonlinearities
have received relatively little attention. In this paper, we the-
oretically investigate finite-size effects in metallic nanofilms
with an emphasis on electromagnetic nonlinearity and on the
role of boundary conditions applied at the nanofilm surface.

A qualitative understanding of finite-size effects in plas-
monic systems can be gained from purely classical arguments.
For example, it has been demonstrated that the electromagnetic
response of a strongly coupled plasmonic system is dramati-
cally altered by the effects of nonlocality when the smallest
geometrical feature of the system (e.g., an interparticle gap)
becomes comparable to a certain phenomenological length
scale, which characterizes the intrinsic nonlocality of metal.7–9

A qualitative theory of optical nonlinearity can also be derived
from purely classical arguments.10

However, a quantitatively accurate theory must be quantum
mechanical. Unfortunately, a fully self-consistent and math-
ematically tractable quantum model of plasmonic systems is
difficult to formulate. In Refs. 11 and 12, a metal nanosphere
was approximated by a degenerate electron gas confined in
a spherical, infinitely-high potential well. The conduction
electrons were assumed to be driven by a time-harmonic and
spatially uniform electric field. This driving field is internal

to the nanoparticle; relating it to the external (applied) field
constitutes a separate problem.13 The model of Refs. 11 and 12
has attracted considerable attention in the optics community.
In particular, it predicts correctly the size dependence of the
Drude relaxation constant. Although the model is mathemati-
cally tractable, it yields an expression for the third-order non-
linear polarizability, which involves an eightfold series. This
expression can be evaluated only approximately.12 Recently,
we have reduced analytically this expression (without resorting
to any additional approximations) to a fivefold series, which
is amenable to direct numerical evaluation.14 We then have
used this result to study the size dependence and frequency
dependence of the third-order nonlinear polarizability.

Still, formulation of the model of Refs. 11 and 12 involves
two important assumptions, which are difficult to avoid and
whose effect is difficult to predict. First, the model assumes
a spatially uniform electric field inside the nanoparticle. In
reality, this field is not spatially uniform because the induced
charge density is different from the infinitely thin surface
density of the Lorenz-Lorentz theory, which was used in
Refs. 12 and 13 and also by us14 to obtain a relation between
the internal and the applied fields. A relation of this kind is
essential for deriving any experimentally measurable quantity.
Unfortunately, a more fundamental approach to relating the
internal and applied fields does not readily present itself, at
least, not within the formalism of Refs. 11 and 12. Second, the
imposition of an infinite potential barrier at the nanoparticle
surface has not been justified from first principles, even though
this boundary condition is frequently employed and can be
defended by noting that a gas of noninteracting electrons
cannot be stably bound by the Coulomb potential of a spatially
uniform, positively charged background. In other words, the
potential barrier makes up for the neglect of the discrete nature
of positively charged ions.

The two assumptions described above can be, in princi-
ple, avoided by using the density-functional theory (DFT).
Within DFT, the exchange-correlation potential renders the
system stable even if the ionic lattice is replaced by jellium.
Time-dependent DFT (TDDFT) and the jellium model have
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been successfully used to compute the linear response of
nanoparticles.15,16 TDDFT and the random-phase approxima-
tion (RPA) have been used without resorting to the jellium
model (that is, with the full account of crystalline structure of
metal) to study the effects of surface molecular adsorption on
the dielectric losses in metal.17,18 Size- and shape-dependence
of the imaginary part of the dielectric function of Ag
nanoparticles has been also studied experimentally.19,20

However, it is not clear whether the same DFT-based
approaches are appropriate for obtaining nonlinear corrections
to the polarizability. Indeed, the exchange-correlation potential
is typically constructed for an infinite and spatially uniform
system and is not expected to be accurate near boundaries,
where the electron density changes on small spatial scales.
Yet, it can be argued that the nonlinear response of a
nanoparticle is strongly influenced by the electron density near
the boundary.10 Further, if the jellium model is used, as is
the case in this work, the binding potential of the positively
charged jellium (even with the account of exchange-correlation
potential) is not as strong as that of discrete ionic lattice. In the
latter case, the Coulomb potential approaches negative infinity
in the vicinity of the ion cores. Therefore, it is not evident
whether the correct model should incorporate an additional
potential barrier at the surface of the nanoparticle to account
phenomenologically for the reduced binding power of the
jellium. Considering the above uncertainty, and the fact that
the infinite potential barrier of Refs. 12 and 13 has been widely
used in the optics literature, it seems desirable to investigate
the influence of the boundary conditions used on the obtained
nonlinear corrections.

To address the problem formulated above, we have per-
formed DFT calculations for the simplest plasmonic system:
a thin metallic film to which a static or low-frequency
perpendicularly polarized electric field is applied. We have
investigated the influence of three different types of boundary
conditions, including the rigid (infinite potential barrier)
boundary condition, the Bardeen’s boundary condition (in
which the potential barrier is displaced from the metal surface),
and free boundaries. We compute nonlinear corrections to
the film polarizability by two different approaches: first, by
the use of a perturbation theory, which is described in detail
below and, second, by direct numerical application of the DFT
(for control). For relatively strong applied fields, when the
perturbation theory is not applicable, the nonlinear polarization
is computed directly by DFT.

The paper is organized as follows. In Sec. II we describe
the physical model in more detail. In Sec. III, we write the
basic equations of the DFT and specialize them to the thin
film problem. The perturbation theory is described in Sec.
IV. Numerical results are reported in Sec. V. Finally, Sec. VI
contains a summary and a discussion.

II. THE PHYSICAL MODEL

Throughout this paper we consider the following model
system. A thin metallic film of width h is taken to occupy the
spatial region −L/2 < x,y < L/2, −h/2 < z < h/2, where
L � h. The latter condition allows for the neglect of effects
due to the edges of the slab. Accordingly, we assume that
all physical quantities depend only on the variable z, so that

the system is effectively one-dimensional. A static electric
field of strength E is applied to the slab in the z direction.
We emphasize that this is the external (applied) field, not the
internal field of Refs. 11 and 12.

We use the stabilized jellium model21–23 and the
Gunnarsson-Lundqvist local-density approximation for the
exchange-correlation potential24 (defined precisely below). At
or near the film surface, we apply three different types of
boundary conditions. In our first set of calculations, we apply
the infinite potential wall condition of Refs. 11 and 12 at the
physical boundary of metal. We denote this type of boundary
condition by “R” (in memory of S. G. Rautian12). In a second
set of calculations, employing what we refer to as the “B”-type
boundary condition, we use the classical Bardeen model25–27

in which the potential wall is displaced from the physical
boundary by the distance

�B = 3π

8kF
, (1)

where kF is the Fermi wave number. The displacement �B can
be expressed in terms of the characteristic length scale of the
problem, �, where �3 is the specific volume per conduction
electron. Using the expressions h̄kF = √

2meEF and EF =
(3π2)2/3h̄2/2me�

2, with EF being the Fermi energy and me

the electron mass, we find that �B = (9π )1/38−1� ≈ 0.38�.
Finally, in the third set of calculations, we do not use any
additional potential barriers at or close to the metal surface.
We denote this last boundary condition as type-“F”.

In all these cases, we compute the electromagnetic response
(polarization). The quantity of interest is the induced dipole
moment per unit area of the slab P , which is related to the
charge density of the conduction electrons −ρe(z), by

P = −
∫

zρe(z)dz. (2)

The quantity ρe(z) � 0 has been computed using standard
DFT theory using the three different types of boundary
conditions, which are described above. We have investigated
the dependence of P on the strength of the applied field
and on the film width. When nonlinear corrections to P are
computed, the characteristic scale for the applied field strength
is the atomic field,

Eat = e

�2
. (3)

The surface density of the dipole moment can then be
conveniently normalized by the quantity

Pat = Eath

4π
. (4)

For a relatively small applied field, the induced polarization
can be expanded in powers of E /Eat according to

P = hE

4π

[
α1 + α3

(
E

Eat

)2

+ α5

(
E

Eat

)4

+ · · ·
]
. (5)

Note that the coefficients α2, α4, etc., are identically zero in
the above expansion due to the slab symmetry.

The slab width can be parametrized by the number of atomic
layers, M . Many metals of interest in plasmonics (including
silver) have an fcc lattice structure with four conduction
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electrons per unit cell. In this case, the slab width is h = Ma,
where the lattice step a is related to � by a = 41/3�. The
slab then occupies the region −Ma/2 < z < Ma/2. In silver,
� ≈ 0.26 nm and a ≈ 0.41 nm.

III. BASIC EQUATIONS

The starting point in DFT is the eigenproblem28,29:[
− h̄2

2me

∇2 + Ueff(z)

]
ψμ(r) = Eμψμ(r), (6)

where the index μ labels energy eigenstates, me is the electron
mass and

Ueff(z) = UH(z) + Uxc(z) + V (z) (7)

is the effective potential consisting of the Hartree term UH(z),
the exchange-correlation potential Uxc(z), and the interaction
potential

V (z) = −ezE , (8)

which describes interaction of the electrons with the applied
field.

We adopt the stabilized jellium model,21–23 according to
which the positively charged ions form a spatially uniform
charge density ρi(z), such that ρi(z) = e/�3 if |z| � h/2 and
ρi(z) = 0 otherwise. In the stabilized jellium model, a constant
potential (in our case, negative-valued) is added to Ueff(z)
inside the spatial region occupied by jellium. This constant
potential is chosen so as to make the metal mechanically
stable at its observed valence electron density. As we found,
the difference in the results obtained using the usual and the
stabilized jellium models is insignificant (it is absent for the
R-type boundary condition). On the other hand, the use of
the stabilized jellium model removes certain anomalies of the
standard jellium model, such as negative surface energy.22

Also, in the case of a silver film, we have used the stabilized
jellium to compute the work function, which we find to be
3.8 eV for the thickest film considered (with M = 32 atomic
layers). This result can be compared to the experimental
measurements in silver30 [4.2eV for the (100) face]. We have
obtained a somewhat less accurate prediction without jellium
stabilization (3.5 eV). Therefore, the stabilized jellium model
is used in all calculations reported below.

The Hartree potential is given by

UH(z) = 2πe

∫ ∞

−∞
[ρi(z

′) − ρe(z′)]|z − z′|dz′, (9)

where −ρe(z) is the density of charge associated with the
conduction electrons. Both densities are normalized by the
condition

∫
ρi(z)dz = ∫

ρe(z)dz = eh/�3.
The Gunnarsson-Lundqvist local-density approximation

for the exchange-correlation potential, which we use in this
work, is of the following form:

Uxc(z) = −
[
Cx

e2

R
+ Cc

e2

aB

ln

(
1 + A

aB

R

)]
. (10)

Here R = (3e/4πρe)1/3, aB = h̄2/mee
2 is the Bohr radius, and

the dimensionless constants are Cx = 0.61, Cc = 0.033, and
A = 11.4.

Assuming periodic boundary condition at x = ±L/2 and
y = ±L/2, we can write the eigenfunctions of (6) in the form

ψlmn(r) = 1

L
exp

[
i
2π

L
(lx + my)

]
φn(z), (11)

where φn(z) satisfies the equation

− h̄2

2me

φ′′
n(z) + Ueff(z)φn(z) = εnφn(z). (12)

In Eq. (11), we have replaced the index μ by the triplet
of quantum numbers (l,m,n). In what follows, we view μ as
a composite index. For example, summation over μ entails
summation over the three quantum numbers l, m, and n. The
energy eigenvalues are given by

Elmn = (2πh̄)2 l2 + m2

2meL2
+ εn. (13)

The ground-state electron density is given by the expression

ρe(z) = 2e
∑

μ


(EF − Eμ)|ψμ(r)|2

= e

nF∑
n=1

Wn|φn(z)|2. (14)

Here the factor of 2 in the first equality in (14) accounts for
the electron spin, EF is the Fermi energy, nF is the maximum
quantum number n for which there exist energy levels Elmn

below the Fermi surface, and Wn is a statistical weight given by

Wn = me(EF − εn)

πh̄2 . (15)

Note that the Fermi energy EF for the model considered in this
paper is close to the macroscopic limit of (h̄2/2me)(3π2/�3)2/3.
In all calculations shown in the paper, we have computed
EF and the related quantity nF by ordering all energy levels
Elmn. It should be also emphasized that the quantity nF is
determined with the account of all degeneracies, including
those due to the spin, so that the second equality in (14) does
not contain the factor of two.

Once ρe(z) is found, the dipole moment per unit area of the
slab P can be computed according to (2).

IV. PERTURBATION THEORY

A perturbative solution to the eigenproblem (12) is obtained
by expanding the quantities φn(z), εn, Wn, Ueff(z), ρe(z) into
power series in the variable x = E /Eat. For example, we write

φn(z) =
∞∑

s=0

φ(s)
n (z)xs. (16)

Upon substitution of these expansions in the original
eigenproblem (12), we obtain the following relations (to third
order in x):

s = 0 : H0φ
(0)
n = ε(0)

n φ(0)
n , (17a)

s = 1 : H0φ
(1)
n + U

(1)
eff φ

(0)
n = ε(0)

n φ(1)
n + ε(1)

n φ(0)
n , (17b)

s = 2 :

H0φ
(2)
n + U

(1)
eff φ

(1)
n + U

(2)
eff φ

(0)
n = ε(0)

n φ(2)
n + ε(1)

n φ(1)
n + ε(2)

n φ(0)
n ,

(17c)
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s = 3 :

H0φ
(3)
n + U

(1)
eff φ

(2)
n + U

(2)
eff φ

(1)
n + U

(3)
eff φ

(0)
n

= ε(0)
n φ(3)

n + ε(1)
n φ(2)

n + ε(2)
n φ(1)

n + ε(3)
n φ(0)

n . (17d)

Here

H0 = − h̄2

2me

∂2
z + U

(0)
H + U (0)

xc (18)

is the unperturbed Hamiltonian and

U
(s)
eff (z) = 2πe

∫ ∞

−∞
|z − ξ |ρ(s)

e (ξ )dξ

+U ′
xc(z)ρ(s)

e (z) + V (s)(z), (19)

where

V (0)(z) = 0, (20a)

V (1)(z) = −ezEat, (20b)

V (2)(z) = 1

2
U ′′

xc(z)
[
ρ(1)

e (z)
]2

, (20c)

V (3)(z) = U ′′
xc(z)ρ(1)

e (z)ρ(2)
e (z) + 1

6
U ′′′

xc

[
ρ(1)

e (z)
]3

. (20d)

The operators U ′
xc, U ′′

xc, and U ′′′
xc are, respectively, the first,

second, and third functional derivatives of the exchange-
correlation potential Uxc with respect to ρe evaluated at
ρe = ρ(0)

e .
In deriving (19) and (20), we have taken into account

the implicit dependence of Ueff on the expansion parameter
x, which stems from the dependence of ρe on x. The first
four coefficients in the expansion of ρe can be obtained using
Eqs. (14) and (15), which results in

ρ(1)
e = e

nF∑
n=1

[
W (1)

n

(
φ(0)

n

)2 + 2W (0)
n φ(0)

n φ(1)
n

]
, (21a)

ρ(2)
e = e

nF∑
n=1

[
W (2)

n

(
φ(0)

n

)2 + 2W (0)
n φ(0)

n φ(2)
n + W (0)

n

(
φ(1)

n

)2]
,

(21b)

ρ(3)
e = e

nF∑
n=1

[
2W (0)

n

(
φ(0)

n φ(3)
n + φ(1)

n φ(2)
n

)
+ 2W (2)

n φ(0)
n φ(1)

n + W (3)
n

(
φ(0)

n

)2]
. (21c)

Here

W (s)
n = w

[
nF∑

k=1

ε
(s)
k − nFε

(s)
n

]
(22)

are the coefficients in the expansion of the statistical weights
Wn and

w = me

πnFh̄
2 . (23)

We note that the integer number nF, which was defined [after
Eq. (14)] as the maximum quantum number n for which
there exist energy levels Elmn below the Fermi surface, is
independent of the applied field E for E � 10Eat. Therefore,
in the perturbation theory developed here, it is sufficient to
compute nF at zero applied field.

The procedure of constructing the perturbation series for
the dipole moment density, P , starts from solving (17a)

numerically. The eigenvalues ε(0)
n are ordered so that εn < εn+1

for n = 1,2, . . .. It follows from symmetry considerations that

φ(0)
n (−z) = (−1)(n−1)φ(0)

n (z), (24a)

ρ(0)
e (−z) = ρ(0)

e (z). (24b)

These relations have been strictly enforced in the numerical
procedures we have implemented.

We seek the solutions to (17) in the following form:

∣∣φ(s)
n

〉 =
∑

k

C
(s)
nk

∣∣φ(0)
k

〉
. (25)

Here the unperturbed basis functions |φ(0)
k 〉 (and the energy

levels ε(0)
n ) are assumed to be known; they are determined by

solving (17a) numerically. In the zeroth order (s = 0), we have
trivially C

(0)
nk = δnk . In higher expansion orders, we determine

C
(s)
nk by substituting (25) into (17). For s = 1,2,3, this results

in the following three equations:

∣∣φ(1)
n

〉 =
∑
k 	=n

∣∣φ(0)
k

〉
ε

(0)
n − ε

(0)
k

〈
φ

(0)
k

∣∣U (1)
eff

∣∣φ(0)
n

〉
, (26a)

∣∣φ(2)
n

〉 =
∑
k 	=n

|φ(0)
k 〉

ε
(0)
n − ε

(0)
k

[〈
φ

(0)
k

∣∣U (1)
eff

∣∣φ(1)
n

〉

+ 〈
φ

(0)
k

∣∣U (2)
eff

∣∣φ(0)
n

〉] − 1

2

∣∣φ(0)
n

〉〈
φ(1)

n

∣∣φ(1)
n

〉
, (26b)

∣∣φ(3)
n

〉 =
∑
k 	=n

∣∣φ(0)
k

〉
ε

(0)
n − ε

(0)
k

[〈
φ

(0)
k

∣∣U (1)
eff

∣∣φ(2)
n

〉
+ 〈

φ
(0)
k

∣∣U (2)
eff

∣∣φ(1)
n

〉 + 〈
φ

(0)
k

∣∣U (3)
eff

∣∣φ(0)
n

〉 − 〈
φ

(0)
k

∣∣φ(1)
n

〉
× (〈

φ
(0)
k

∣∣U (2)
eff

∣∣φ(0)
n

〉 + 〈
φ(0)

n

∣∣U (1)
eff

∣∣φ(1)
n

〉)]
. (26c)

Regarding the set of Eqs. (26), we note the following. First,
the vectors |φ(s)

k 〉 must be computed recursively starting with
s = 1. Thus, we compute |φ(1)

n 〉 according to (26a). The result
is substituted into (26b), which allows one to compute |φ(2)

n 〉,
and so forth. However, unlike in the ordinary perturbation
theory, the operators U

(s)
eff in the right-hand sides of (26) are still

unknown and must be determined separately. Indeed, U
(s)
eff (z)

depends on the functions ρ(s)(z) according to (19) and the latter
depend on the functions φ(s ′)

n (z) with s ′ = 0,1, . . . ,s according
to (21), and some of these functions φ(s ′)

n (z) have not yet been
computed, even at s = 1. We therefore must consider equations
(19), (21), and (26) as a coupled set of equations, which must
be solved self-consistently.

To compute the matrix elements appearing in the right-hand
sides of (26), we use the following procedure. We start with
s = 1 and define a (yet unknown) quantity

�
(1)
kn ≡ 〈

φ
(0)
k

∣∣U (1)
eff

∣∣φ(0)
n

〉
. (27)

In particular, we have ε(1)
n = �(1)

nn . By substituting the expan-
sion (26a) for |φ(1)

n 〉 into (21a) and using (22) for W (1)
n , we can
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express ρ(1)
e (z) in terms �

(1)
kn as follows:

ρ(1)
e (z) = e

nF∑
n=1

{
w

[
nF∑

k=1

�
(1)
kk − nF�

(1)
nn

][
φ(0)

n (z)
]2

+ 2W (0)
n φ(0)

n (z)
∑
k 	=n

�
(1)
kn

ε
(0)
n − ε

(0)
k

φ
(0)
k (z)

}
. (28)

We then substitute (28) into (19) (in which we must
specialize to the case s = 1) and compute the expectation
value of U

(1)
eff between the unperturbed states 〈φ(0)

n | and |φ(0)
n 〉

to obtain the following set of linear equations:

�(1)
nm +

nF∑
k=1

∑
l 	=k

Lkl
nm�

(1)
lk

+w

nF∑
k=1

(
nF∑
l=1

�
(1)
ll − nF�

(1)
kk

)〈
φ(0)

n

∣∣G(0)
kk

∣∣φ(0)
m

〉 = R(1)
nm. (29)

This set must be solved with respect to the unknown
quantities �(1)

nm. The matrix L is defined by the following
relations, which contain only the known quantities:

Lkl
nm = 2W

(0)
k

〈
φ(0)

n

∣∣G(0)
kl

∣∣φ(0)
m

〉
ε

(0)
k − ε

(0)
l

, (30)

G
(0)
kl (z) = 2πe2

∫ ∞

−∞
|z − ξ |φ(0)

k (ξ )φ(0)
l (ξ )dξ

−U ′
xc(z)φ(0)

k (z)φ(0)
l (z) (31)

and the right-hand side of the equation is determined by the
following expression:

R(1)
nm = 〈

φ(0)
n

∣∣V (1)
∣∣φ(0)

m

〉
. (32)

The computational complexity of solving (29) can be
reduced by making the following observation. It follows from
(20b) and (32) that R

(1)
m+2q,m = 0 for all q = 0, ± 1, ± 2, . . .

and m,m + 2q � 1. Using (24) and the relation

G
(0)
kl (−z) = (−1)k−lG

(0)
kl (z), (33)

we find that the set of Eqs. (29) splits into two uncoupled
subsystems. The first subsystem is homogeneous and contains
the matrix elements of the form �

(1)
m+2q,m. The only solution to

this subsystem is trivial. Thus, we have �
(1)
m+2q,m = 0, which

also implies that the last term in the left-hand side of (29)
vanishes and ε(1)

n = �(1)
nn = 0. The other subsystem is of the

form

�
(1)
m+2q+1,m +

nF∑
k=1

∑
p

L
k+2p+1,k

m+2q+1,m�
(1)
k+2p+1,k = R

(1)
m+2q+1,m,

(34)

with a nonzero right-hand side. Equation (34) must be solved
numerically with respect to the unknowns �

(1)
m+2q+1,m. In

addition to the simplification outlined above, the following

parity relations hold:

φ(1)
n (−z) = (−1)nφ(1)

n (z), (35a)

ρ(1)
e (−z) = −ρ(1)

e (z), (35b)

U
(1)
eff (−z) = −U

(1)
eff (z). (35c)

After solving (34) numerically, one can find |φ(1)
n 〉 from

(26a), and also ρ(1)
e (z) and U

(1)
eff (z) from (21a) and (19),

respectively.
Next, we take s = 2 and start again with computing the

matrix elements �
(2)
kn , which are defined in a manner similar

to (27):

�
(2)
kn ≡ 〈

φ
(0)
k

∣∣U (2)
eff

∣∣φ(0)
n

〉
. (36)

Once �
(2)
kn are found, |φ(2)

n 〉 can be obtained using (26b)
while the second-order correction to the energy of the nth
level is given by

ε(2)
n = �(2)

nn + 〈
φ(0)

n

∣∣U (1)
eff |φ(1)

n

〉
. (37)

Note that the terms 〈φ(0)
k |U (1)

eff |φ(1)
n 〉 and 〈φ(1)

n |φ(1)
n 〉 in (26b) are

first-order quantities, which have already been computed.
After substituting (26b) and (22) into (21b), we arrive at the

expression for ρ(2)
e (z), which is similar to (28) and is omitted

here. The only unknown quantities in this expression are the
matrix elements �

(2)
kn . We then substitute this expression into

(19), in which we specialize to the case s = 2, and take the
expectation between the unperturbed states. This yields the
following set of equations:

�(2)
nm +

nF∑
k=1

∑
l 	=k

Lkl
nm�

(2)
lk

+w

nF∑
k=1

(
nF∑
l=1

�
(2)
ll − nF�

(2)
kk

)〈
φ(0)

n

∣∣G(0)
kk

∣∣φ(0)
m

〉 = R(2)
nm. (38)

Here the unknowns are �(2)
nm. We see that (38) has the same

matrix as (29) but a different right-hand side, viz.,

R(2)
nm =

nF∑
k=1

∑
l 	=k

Lkl
mn

〈
φ

(0)
l

∣∣U (1)
eff

∣∣φ(1)
k

〉

+
nF∑

k=1

W
(0)
k

[
W

(0)
k

〈
φ

(1)
k

∣∣φ(1)
k

〉〈
φ(0)

n

∣∣G(0)
kk

∣∣φ(0)
m

〉
−Ak

〈
φ(0)

n

∣∣G(0)
kk

∣∣φ(0)
m

〉 − 〈
φ(0)

n

∣∣G(2)
kk

∣∣φ(0)
m

〉]
+ 1

2e2

〈
φ(0)

n

∣∣U ′′
xc

[
ρ(1)

e

]2∣∣φ(0)
m

〉
, (39)

where

G
(2)
kk (z) = 2πe2

∫ ∞

−∞
|z − ξ |[φ(1)

k (ξ )
]2

dξ − U ′
xc(z)

[
φ

(1)
k (z)

]2

(40)

and

Ak = w

[
nF∑
l=1

〈
φ

(0)
l

∣∣U (1)
eff

∣∣φ(1)
l

〉 − nF
〈
φ

(0)
k

∣∣U (1)
eff

∣∣φ(1)
k

〉]
. (41)

All quantities, which enter the definition of R(2)
nm, are de-

termined in first order. As follows from (24a), (33), and
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(35), R
(2)
m+2q+1,m = 0 for all q = 0, ± 1, ± 2, . . . and m,m +

2q + 1 � 1. Thus, unlike in the case s = 1, we now have
a homogeneous subsystem for �

(2)
m+2q+1,m, which has only

the trivial solution, while the quantities �
(2)
m+2q,m satisfy the

following inhomogeneous subsystem:

�
(2)
m+2q,m +

nF∑
l=1

∑
p 	=0

L
l+2p,l

m+2q,m�
(2)
l+2p,l

+w

nF∑
k=1

(
nF∑
l=1

�
(2)
ll −nF�

(2)
kk

)〈
φ

(0)
m+2q

∣∣G(0)
kk

∣∣φ(0)
m

〉=R
(2)
m+2q,m.

(42)

We then solve (42) with respect to �
(2)
m+2q,m numerically

and use the result to compute the second-order corrections,
that is, the quantities |φ(2)

n 〉, ρ(2)
e , U

(2)
eff , W (2)

n , and ε(2)
n by using

Eqs. (26b), (21b), (19), (22), and (37), respectively. At second
order, the following parity relations hold:

φ(2)
n (−z) = (−1)n−1φ(2)

n (z), (43a)

ρ(2)
e (−z) = ρ(2)

e (z), (43b)

U
(2)
eff (−z) = U

(2)
eff (z). (43c)

Finally, in the case s = 3, all quantities in the right-hand
side of (26c) are known except for

�
(3)
kn ≡ 〈

φ
(0)
k

∣∣U (3)
eff

∣∣φ(0)
n

〉
. (44)

Again, once �
(3)
kn are found, |φ(3)

n 〉 can be obtained from
(26c) while the third-order corrections to the energies are given
by

ε(3)
n = �(3)

nn + 〈
φ(0)

n

∣∣U (1)
eff

∣∣φ(2)
n

〉 − ε(2)
n

〈
φ(0)

n

∣∣φ(1)
n

〉
+ 〈

φ(0)
n

∣∣U (2)
eff

∣∣φ(1)
n

〉
. (45)

It follows from the parity relations (24a), (35), and (43)
that all terms in the right-hand side of (45) vanish except for
�(3)

nn , so that we have ε(3)
n = �(3)

nn . In fact, we see below that
ε(3)
n = �(3)

nn = 0. Similarly to the procedure outlined above for
the s = 1 and s = 2 cases, we substitute φ(3)

n from (26c) and
W (3)

n from (22) into (21c), obtain an expression for ρ(3)
e (z), in

which the only unknown quantities are �
(3)
kn , and substitute the

result into (19), where we specialize now to the case s = 3.
Finally, we compute the same expectations as before and obtain
the set of equations

�(3)
nm +

nF∑
k=1

∑
l 	=k

Lkl
nm�

(3)
lk

+w

nF∑
k=1

(
nF∑
l=1

�
(3)
ll −nF�

(3)
kk

)〈
φ(0)

n

∣∣G(0)
kk

∣∣φ(0)
m

〉 = R(3)
nm (46)

with respect to the unknowns �(3)
nm. The matrix is the same

as before, while the right-hand side is given by the following

relations:

R(3)
nm = −2

nF∑
k=1

W
(0)
k

[ ∑
l 	=k

Dkl

〈
φ(0)

n

∣∣G(0)
kl

∣∣φ(0)
m

〉

− 〈
φ(0)

n

∣∣G(3)
kk

∣∣φ(0)
m

〉] − 2
nF∑

k=1

W
(2)
k

〈
φ(0)

n

∣∣G(1)
kk

∣∣φ(0)
m

〉

+ 1

e2

〈
φ(0)

n

∣∣U ′′
xcρ

(1)
e ρ(2)

e

∣∣φ(0)
m

〉
− 1

6e3

〈
φ(0)

n

∣∣U ′′′
xc

[
ρ(1)

e

]3∣∣φ(0)
m

〉
, (47a)

G
(1)
kk (z) = 2πe2

∫ ∞

−∞
|z − ξ |φ(1)

k (ξ )φ(0)
k (ξ )dξ

−U ′
xc(z)φ(1)

k (z)φ(0)
k (z), (48)

G
(3)
kk (z) = 2πe2

∫ ∞

−∞
|z − ξ |φ(1)

k (ξ )φ(2)
k (ξ )dξ

−U ′
xc(z)φ(1)

k (z)φ(2)
k (z), (49)

where

Dnk =
〈
φ

(0)
k

∣∣U (1)
eff

∣∣φ(2)
n

〉 + 〈
φ

(0)
k

∣∣U (2)
eff

∣∣φ(1)
n

〉 − ε(2)
n

〈
φ

(0)
k

∣∣φ(1)
n

〉
ε

(0)
n − ε

(0)
k

.

(50)

Similarly to the case s = 1, we have R
(3)
m+2q,m = 0 for all

q = 0, ± 1, ± 2, . . . and m,m + 2q � 1. This follows from
the parity relations (24a), (33), (35), and (43). Consequently,
we have �

(3)
m+2q,m = 0 and ε(3)

n = �(3)
nn = 0. The matrix el-

ements of the form �
(3)
m+2q+1,m are determined from the

following subset:

�
(3)
m+2q+1,m +

nF∑
k=1

∑
p

L
k+2p+1,k

m+2q+1,m�
(3)
k+2p+1,k = R

(3)
m+2q+1,m.

(51)

As in the s = 1 case, the following parity relations hold:

φ(3)
n (−z) = (−1)nφ(3)

n (z), (52a)

ρ(3)
e (−z) = −ρ(3)

e (z), (52b)

U
(3)
eff (−z) = −U

(3)
eff (z). (52c)

By solving (51) we can find, in particular, the expansion
coefficient ρ(3)

e (z) for the negative charge density from (21c)
using (26c) and (22) at s = 3. The expansion coefficients α1

and α3 in (5) are then obtained from

αs = − 4π

hEat

∫ ∞

−∞
zρ(s)

e (z)dz. (53)

It can be seen from (43b) that α2 = 0.

V. RESULTS

We have performed computations for varying film width
and different boundary conditions. We have found that, in
the case of R- and B-type boundary conditions, the effect
of including the exchange-correlation potential is relatively
minor. However, in the case of the F-type boundary condition,
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the exchange-correlation potential must be included in order
to stabilize the conduction electrons. For the purposes of
a fair comparison, we show the results of R- and B-type
simulations without the exchange-correlation potential, except
in Fig. 3 below, where the results with and without the
exchange-correlation potential are compared. It will be shown
that the R- and B-type boundary conditions produce a negative
nonlinear correction to the polarizability and saturation effects,
in agreement with Refs. 10–12. However, the F-type boundary
condition results in a positive nonlinear correction whose
magnitude is a few hundred times larger than that in the case of
R- or B-type boundary conditions. In all cases, the emergence
of macroscopic (bulk) behavior becomes evident in relatively
wide films.

The eigenproblem (12) was solved algebraically by dis-
cretizing the differential equation in the interval −zmax/2 �
z � zmax/2. Here zmax = h + 12a = (M + 12)a for the F-type
boundary condition, zmax = h + 2�B for the B-type boundary
condition [�B is defined in (1)], and zmax = h for the R-type
boundary condition. Recall that the jellium (the physical slab)
is contained in the region −h/2 < z < h/2, where h = Ma.
Central differences with 20 discrete points per the lattice unit
a have been used and convergence was verified by doubling
this number.

In Fig. 1, we plot P as a function of the applied field,
E , for different widths of the slab and for different types of
boundary conditions. In the case of the R- or B-type boundary
conditions, the system is stable independent of the strength of
the applied field. In the case of F-type boundary condition,
we have observed an instability of the charge density for
E � 0.1Eat. This instability can be explained by the effect of
tunneling, which can result in significant charge accumulation
in a biased potential over long periods of time, or after many
DFT iterations. The data points affected by this instability
are not displayed in Fig. 1. It can be seen that the F-type
boundary condition tends to increase P (compared to the
macroscopic limit) while the B- or R-type boundary conditions
tend to decrease P . For all types of boundary conditions,
deviations from the macroscopic result are significant when
M = 2 and M = 8 but small when M = 32. In the case M = 2
[Fig. 1(b)], the B-type curve lies above the R-type curve; a
similar result was obtained for other values of M (data not
shown). Physically, the behavior illustrated in Fig. 1 can be
understood as the result of electron spillover31,32 (in the case
of F-type boundary condition) or as the combined action of
the finite charge density of the jellium and of the uncertainty
principle (in the case of B- or R-type boundary conditions).

Although the deviation of P from the macroscopic result
is obvious in Fig. 1, all curves shown in this figure appear to
be linear. To visualize the deviations from linearity, we have
computed the nonlinear contribution to the dipole moment
density according to

Pnonl = P − hα1

4π
E . (54)

The result is plotted in Fig. 2. It can be seen that the
correction is negative for R- and B-type boundary conditions.
For the F-type boundary condition, the correction is positive
and about 200 times larger in magnitude. An interesting
effect can be seen in Fig. 2(b). Namely, the B-type boundary

M = 2
M = 8

M = 32
Bulk

(a)

R

Fat

at

0.10.050

0.1

0.05

0

M = 2
Bulk

(b)

B

R

Fat

at

0.10.050

0.1

0.05

0

FIG. 1. (Color online) The dipole moment density per unit area,
P , as a function of the applied field, E , for different types of
boundary conditions and for films consisting of different numbers
of atomic layers, M . The continuous line corresponds to the “bulk”
(macroscopic) result and the centered symbols represent the results
obtained from the DFT. In panel (a), three different values of M

are used, as labeled. All data points above the continuous line
correspond to F-type boundary conditions and the points below the
line correspond to R-type boundary conditions; B-type boundary
conditions are not used in this panel. In panel (b), only M = 2 is
used. The two sets of centered symbols below the continuous line in
(b) correspond to R- and B-type boundary conditions, as labeled. In
both panels, the data points for F-type boundary conditions (above the
continuous line) terminate at E /Eat = 0.87; computations for larger
values of E (with F-type boundary conditions) are affected by the
numerical instability discussed in the text.

condition produces a nonlinear correction of a larger mag-
nitude compared to the R-type boundary condition. This is
somewhat unexpected since the data of Fig. 1 suggest that
the B-type curve is closer to the macroscopic asymptote.
Moreover, we have discovered a nonmonotonic dependence
of the expansion coefficient α3 in (5) on the displacement
parameter �, as is discussed below.

Recall that the B-type boundary condition involves a
displacement of the rigid potential wall from the surface of
the metal by the distance � = �B ≈ 0.38�. We can, however,
view � as a free parameter. In the case � = 0, we recover the
R-type boundary condition; in the case � = ∞, we recover
the F-type boundary condition, and � = �B corresponds to
Bardeen’s model. In Fig. 3, we plot the expansion coefficient
α3 as a function of � for M = 2. In this figure, we show the data
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M = 2
M = 8

M = 32

(a)

R: = 2 · 106

F: = 104

0.10.050

1

0.5

0

-0.5

-1

M = 2

(b)

R,B: = 2 · 106 RB

F: = 104

nonl

at
·

at

0.10.050

1

0.5

0

-0.5

-1

at

nonl

at
·

FIG. 2. (Color online) Pnonl as a function of the applied field, E .
The same convention for encoding the different types of boundary
conditions and the different numbers of atomic layers as in Fig. 1
is used. Additionally, different numerical normalization factors N
have been used for different types of boundary conditions, as labeled.

obtained both with and without the exchange-correlation po-
tential. We find that the surprising nonmonotonic dependence
is observed in both cases. For larger values of �, the red curve
in Fig. 3 (with exchange-correlation potential included) rapidly
grows and saturates at the level of α3 ≈ 0.1 for � � 8�B (data
not shown). The latter result exactly corresponds to the one
obtained with the F-type boundary condition. Note that α1 is
almost independent of �. Qualitatively, the same results have
been obtained for M = 8 and M = 32.

without ECP
with ECP

M = 2

α3 · 103

Δ

ΔB

210

3

2

1

0

-1

FIG. 3. (Color online) Dependence of α3 on � for M = 2, with
and without accounting for the exchange-correlation potential (ECP).

M = 32
M = 8
M = 2

at

10001001010.1

1000

100

10

1

0.1

at

FIG. 4. (Color online) P as a function of the applied field, E , for
B-type boundary condition and for different numbers of atomic layers,
M . Centered symbols correspond to DFT results and continuous lines
to the analytical expression (55).

Next, in Fig. 4, we plot P for the B-type boundary
condition (with � = �B) in a very large interval of E , up
to E /Eat = 103. Of course, an applied static electric field of
this magnitude is not achievable in practice. However, the
situation can be more experimentally favorable in the case
of quasistatic fields. Although we do not consider this case
directly, it is known that the internal field enhancement factor
due to plasmon resonances is of the order of ωp/γ , where ωp is
the plasma frequency and γ is the Drude relaxation constant.
This factor can be as large as ∼500 in the case of silver,
and it enters the nonlinear correction to the polarizability in
the fourth power.13,14 Note that the quasistatic approximation
(known in the context of DFT as the adiabatic approximation)
is applicable as long as hω/c 
 1, which easily holds even in
the visible spectral range. Also, the electric field intensity in
very short laser pulses can be of the order of or higher than the
atomic field, and the related physics has attracted considerable
recent attention.33

In Fig. 4, we also compare the DFT calculations with the
expression

P =
{

hE
4π

[
1 − �

8πh

∣∣E
E at

∣∣] , if
∣∣E
E at

∣∣ � 4πh
�

,

h2Eat
2�

, otherwise,
(55)

which was derived in Ref. 10 using purely classical arguments.
It can be seen that (55) is surprisingly accurate for M =
8 and especially for M = 32. This may seem unexpected
because (55) contains a nonanalyticity of the form E |E |, while
the expansion (5) represents a real analytic function. This
discrepancy is resolved by noting that (5) has a finite radius
of convergence and that an expansion of this type cannot,
in principle, capture the saturation phenomena illustrated in
Fig. 3 . On the other hand, numerical DFT calculations can be
carried out whether or not (5) converges.

Finally, we investigate the dependence of the coefficients
α1, α3 on the number of atomic layers M for all three types
of boundary conditions. The results are shown in Fig. 5. It
can be seen that, in all cases, the dependence is monotonic.
Comparing the results for R- and B-type boundary conditions,
we reconfirm the trend that has been already noted, namely,
that B-type boundary conditions produce a smaller finite-size
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B
R
F

(a)

α1

M 3020100

1.5

1

0.5

B
R
F

(b)

R,B: = 400

F: = 1

α3 ·

M 3020100

0.2

0.1

0

-0.1

FIG. 5. (Color online) Coefficients α1 (a) and α3 (b) as functions
of the number of atomic layers, M , for three different types of
boundary conditions. Different numerical normalization factors N
have been used for different types of boundary conditions, as labeled.

correction to α1 (compared to R-type boundary conditions) but
a larger nonlinear response.

VI. SUMMARY AND DISCUSSION

We have studied theoretically and numerically polarization
of a thin silver film under perpendicularly applied low-
frequency external electric field. Three different boundary
conditions have been applied at the film surface. It was

shown that the sign and magnitude of the nonlinear correction
to the film polarizability depends dramatically on the type
of boundary condition used. Since all theories involved
contain approximations, only comparison with experiment can
determine which boundary condition is physically correct.

An obvious shortcoming of the calculations reported herein
is that they are carried out for static fields. However, the results
can be extended to finite frequencies, as long as relaxation
and resonance phenomena are not taken into consideration,
that is, if the frequency is far below the lowest plasmon
resonance of the system. In practice, this means that the
theory can be applied up to THz frequencies. Thus, our
results are amenable to experimental verification. A possible
experimental test could be a measurement of the sign of the
real part of the nonlinear susceptibility χ (3) for a suspension
of silver nanodisks at the excitation frequency ∼10 GHz.
The disk thickness should be much smaller than the skin
depth, δ ≈ 0.2 μm in this example. Previous experimental
measurements of χ (3) were largely confined to the optical
and near-IR spectral regions,34–37 where the sign of Re[χ (3)]
can depend on frequency due to the effects of plasmon
resonances.

It seems possible to further extend our theory to optical
frequencies by utilizing the quasistatic approximation, which
is known as the adiabatic approximation in the context of
DFT.38 In this approximation, all potentials are computed using
instantaneous values of the density, for example, by writing for
the Hartree interaction potential UH[ρe](r,t) = UH[ρe(r,t)],
and similarly for other functionals. This corresponds to
neglecting the effects of retardation in the electromagnetic
interaction and is adequate as long as hω/c 
 1. Note
that plasmon resonances and relaxation phenomena can
be taken into consideration within quasistatics. However,
time-dependent DFT (TDDFT) is still relatively unexplored,
although some promising results have been obtained.39
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