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We consider sationary fluctuations due to nonlinear excitation in a bichromophore, that is, in a
molecule consisting of two chromophoric groups. We describe correlated fluctuations of the
level populations and of the flux of flourescent photons emitted by a bichromophore. The
population fluctuations are observable in experiments involving quasielastic particle scattering or
Raman scattering of probe radiation. Experiments of this kind can yield information about the
rate of nonradiative energy transfer. The photon correlation is characterized by antibunching and
sub-Poissonian statistics and can yield information about collective excitation and nonlinear
guenching.

(Abstract translated from Russian by V.A.Markel)



s

Nonlinear photoprocesses in bichromophores. Il. Correlated population

and fluorescence intensity fluctuations
V.A. Markeland M.l. Shtokman

) ~ (Submitted 27 November 1987)
Opt. Spektrosk. 65, 1258-1262 (December 1988)

Stationary fluctuations in a bichromophore (a molecule containing two chromophore groups)
accompanying its nonlinear interaction are examined. The correlation fluctuations in the level
populations of the two monomers comprising the bichromophore are described together with the
flux of fluorescence photons emitted by the bichromophore. The population fluctuations are
measured in experiments on quasielastic particle scattering as well as Raman scattering of probe
radiation. These experiments make it possible to obtain information on the nonradiative energy
exchange rates between monomers. The photon correlation has an ant igrouping character and is
responsible for the photon sub-Poisson statistics. It contains information on the cooperative

excitation (nonlinear quenching) in the bichromophore.

INTRODUCTION

Reference 1 examines the nonlinear optical excitation
_of a bichromophore: a molecule containing two chromo-

phore groups. Kinetic (balance) equations are obtained and -

are used to find the average populations.

The present study is devoted to a theoretical description
of stationary (i.e., with fixed excitation conditions) fluctu-
ations in an ensemble of bichromophore molecules. These
fluctuations are caused by the randomness of the interlevel
transiticns (the kinetic equations describe only the transi-
tion probabilities and do not determine them). Excitation
exchange causes the population fluctuations in each of the
monomers in the bichromophore to be correlated. The auto-
correlation function of fluorescence intensity fluctuations is
determined. Sub-Poisson photon statistics and an antigroup-
ing effect are predicted. )

CORRELATED STATIONARY POPULATION FLUCTUATIONS .

Since n,, is the probability that both monomers of a

bichromophore are located in the lower excited states S, itis -

possible to find the (simultaneous) correlation factor of the
populations of these states from stationary solutions of ki-
netic equations (1.25), (1.29)"
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It is clear therefore that when J< [T, + (8,,/2))/
iry(@,y — 02,) — 04,] we have population anticorrelation,
while in the opposite case there is a positive correlation. If
1@y — 02,) — 04, <0,K < 0forall /. The population corre-
fation and excitation energy transport between monomers
have a self-consistent determinate relationship.'

In order to describe the fluctuation dynamics we will
introduce the microscopic populations—the functions
t, (1)—in the following manner: v; () = 1 if at time 7 the
first monomer in the given bichromophore is in state S},
while the second isin S ', and in the opposite case v (1) = 0.
The population n;; and the correlation function of the popu-
lations of the bichromophore P}/(7) are expressed as the

- average over the ensemble. - . - _. B
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The function P §'(7) in Egs. (2) is the joint probability
that the bichromophore at time =0 is in state (/) and
1 = 7instate (k,/). When 7> 0, P }/(7)satisfies kinetic equa-
tion system™(1.18)—(1.20) with respect tothe upper pair of
indices, while the lower pair of indices represent the initial
conditions: P §'(0) = 6,,8;n,. It follows from these proper-
ties that P /(7). is proportional to the Green’s function G j/
of system (1.18)-(1.20)

PE(=)=n 68 (s), GERLO) =150, (3)

Equations (3) are an expression of the Onsager princi-
ple. These solve the problem of describing the dynamics of
the correlated fluctuations in principle. '

We will introduce the microscopic level populations
Vi) of . the  separate chromophores

2 2

=Y viuv'= Y v, through which the mutual corre-
i=0 i=0

- lation function of the level population fluctuations of the

monomers C(7) and the analogous autocorrelation function
C() are expressed
1
C()= IOV — n2= 3 Pid (s)— 3,
i, =0
1 (4)
C (=)= — 2= _E P (=) —ni.

i =0

The minor contributions associated with the population
of the S, levels are dropped from Eq. (4).

The expression for the Green's functions in Egs. (3) is
very cumbersome. Considering a symmetric bichromophore
for simplicity in the limiting case of strong cooperative pro-
cesses (B,,>T,0,0,1) and the rapid decay of the level
S, (B8, <) we abtain

=), € ()= exp {(—[Ti+ (s + &) 117
| Fexp (—2307) 4 (1 — 2my) exp (—(1 - 70) snel =) (3)

where the plus applies to C(7), and the minus applies 10
C(7); n, is given by Eq. (1.29).

Figure 1 shows the behavior of the mutual correlation
function C(7) [Eq. (5)] for various excitation exchange
rates B, = B [Eq- (1.5) ] With small delays 7 there will
always be an-anticorrelation of the populations [compare to
Eq. (1)] which can be attributed to cooperative quenching.
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FIG. 1. Irreducible correlation function C(r) [Eq. (5)] of the first level
populations. Plotted for a symmetrical bichromophore with a relative in-
tensity /1, = 0.5; ro=0, 7, =0 in the limit B, » . The relative ex-
change transfer rates Bio/T, =100, 10, 5, 2, 0.5,0.25, 0 (curves 1-7).

The latter (under these conditions) will cause one of the two
monamers on the S, levels to be excited to the S, state from
which it immediately returns to S}, while the other jumps to
Sp- Thus the level Populations of the various monomers fluc-
tuate in antiphase. The reversal of the correlation sign with
increasing 7 can be attributed to the fact that the population
process from one monomer due to exchange processes ( 1.5)
is transferred to the other monomer, Unlike cross-correla-
tion function C(7) autocorrelation function E‘(r} [Eq. (5)]
is positive, and monotonically diminishes in 7.

FLUORESCENCE INTENSITY FLUCTUATIONS AND SUB-
POISSON PHOTON STATISTICS

For definiteness we will consider the integrated fluores-
cence over the monomers. We will assume that the spectral
fluorescence width Aw is sufficiently great (much greater
thanT',,0,,/). We can therefore neglect the coherent (Gaus-
sian) fluctuations in the number of photons, whose correla-
tion time is 1/Aw with the times characteristic of this study.
Gaussian fluctuations are also eliminated if the photodetec-
tor area significantly exceeds the coherence area. We will
consider non-Gaussian fluctuations (for their properties
see, for example, Ref. 2) associated with the finite number of
radiators.

Let J(¢) be the photon flux (the number of quanta inci-
dent on the photodetector per unit time). The normalized
autocorrelation function g(7) of the photon flux under con-
ditions of non-Gaussian fluctuations-is expressed through
such a function for J5(z): The photon flux at the photodetec-
tor emitted by a single particle (by the bichormophore)

GOV (=D —<I>2 fyq)
IR =N -

THO T, (=) — T2
f{::l: - 4\/l"ir : ’

1

. glT)=

(6)

where N is the number of bichromophores from which radi-
ation is recorded. The average flux is expressed as
(/1) =250r n,, where Q is the flouoresence quantum effi-
ciency; § is a geometric factor (the fraction of the total num-
ber of photons striking the photodetector).

The autocorrelation function of the photon flux takes
the form

F(=1=<0(0) 14 (=)= (30T (nf, 141 (=)
+ 268 1 + 200 1CK (=) + 2813 (=1)). (7)

-+
where G }/'is the Green's function of the symmetrized system
(1.18), (1.20), ¢ 1.23); see Discussion.
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We will consider, for example, the term in Eq. (7) pro-

. _
portional to G of (7). This is expressed as the product of the-

following probabilities: The probability of being in the initja]
state (1,0) at initial time (the factor n5 ); the probability of
radiating a recordable photon at t =0 (5QT",) after which
the bichromophore ends up in the state (0,0); the probabili-
ty of a transition by time t = 7 to the state (1,0) [the proba-
bility is given by the Green’s function G g0 (7) ]; the proba-
bility of photon radiation at final time (6QT,). The
remaining contributions to Eq. (7) are analogous: these are
the summation terms over the initial and intermediate states,

The structure of Eq. (7) is substantially different from
population correlation function (4) due to the change in the
bichromophore state as a result of photon emission. Func-
tion (7) is independent of the rates of processes (1.5), since
energy exchange does not alter the fluorescence intensities.
If we ignore cooperative processes (setting f,, = 0}, Eq.
(7) is consistent with the results from Ref. 3.

For simplicity we consider the case ro=0,0, =0 and
we obtain from Eq. (7)

Fi= P 4 i_T
‘(Eaf-‘l-‘l%=(2m]2+12n“-{2n,}3| - ;}-e
z
“—{lrl +51u3+5u}[ln£0] — Ay Ry 4 ﬂuu:l
eky:_s)._‘r
+2any, (P4 5101}} 7 y ' (8)

where A, _are the eigenvalues of the system (1.18), (1.20),
(1.23), : '

1
?.i=—§{3[1‘, —+ 5yof)

+Bn ;V[I'l. + 010d)? + 28y, (Ty — opef + 5_21_ }* (9

Figure 2 gives the normalized autacorrelation functions

S (7) calculated consistent with Egs. (6)—(8). Itisclear that

inall cases thereisa negative correlation (photon antigroup--

-1ng). Photon correlation is fundamentally different from the

correlation of the populations of the radiating levels in this
aspect (compare to Fig. 1 and its discussion).

With small times 7 or at low intensities [ Fig. 2(a)] the
cooperative processes enhance antigroupingsince they inhi-
bit independent emission of two photons by the bichromo-
phore monomers, and for successive emission of two pho-

.7f 3

r r
F1G. 2. Irreducible normalized correlation function f (1) of fluorescence
photon flux [Egs. (6) and (8) I: fa) relative intensity of exciting radi-
ation 171, =0.1, 8,,/T', =0, I, 100 (curves 1-3); (b) 1/F, = 10, B/
[, =0, 10, 1000 (curves 1-3).
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(ons a single monomer requires time (greater with large /)
for reexcitation. In the case of finite saturation [Fig. 2(b)]
(he cooperative processes will suppress photon antigrouping
with relatively large times since they reduce their correlation
time- )

Photon antigrouping (a negative correlation of Egs.

(6) and (8), see also Fig. 2) suggests that there is a dead
time following photon emission and during this period the
probablllty ofem:ttmg a second photon is reduced (compare
{0 model experiments*). Such photon statistics are charac-
terized by a dispersion that is smaller than for a Poisson
distribution, and are called sub-Poisson statistics.

Let M be the number of photons striking the photode-
tector over the sampling time 7. The dispersion (AM?) is
expressed through the autocorrelation function of photon
Aux (6) (see, for example, Ref. 5)

T T8
CAMES = (ALY (1 4 £), 5:2—;.—>[d:*j fue) e, (10)
0 [1]

Since f (7) <0 (antigrouping) it is obvious that £ <0,
i.e., the dispersion of the number of photons is in fact less
than for a Poisson flux. The corresponding parameter for the
photosamples is obtained by multiplying £ [EQs. (10)] by
the quantum efficiency of the photocathode.

Assuming T> ! we find € =4800 n, 1% f()dt.
Using Egs. (9), (10), and (6) we cobtain a closed expression
for the parameter & through the average populations (1.24)—
(1.28)

QT
= Zny 12+ ﬂlf.li-:'2 + Bl 4+ 2540d])

X {1 nys — 203) [3 (T + ciof) + Bl

{n m‘l

— nyy (A =+ ﬂu}] — 2nyn (T 4+ G-:o”}-
(11)

— (Ty 4 s30d +$11}[

Figure 3 illustrates the behavior of £ as a function of
aturation at various rates /3, ,. It is clear that at low intensi-
lies the cooperative processes will cause a substantial rela-
tive growth of £ (in this case, however, |£ | isnot large). The
modulo value of £ increases with increasing J, reaching a
maximum at finite values of I that are lower the greater g, ,.
The maximum value of |£ | is one-halfin the absence of coop-
erative processes (8,, = 0); it tends to 1/2 also in the case of

/1,
7 Z

0 L] 1
3
z
7

-0.5
s

FIG. 3. Parameter &£al the ﬁuorr:scence sub- Poisson statistics plctted asa-
function of the relative mtensnt) of exciting rad:auon B,/T,=0,1,100

{curves 1-3).
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very weak cooperation (5,,» I",) and is somewhat less than
1/2 with intermediate values of ,,. At high intensities |£ |
approaches zero and cooperative processes diminish |£ |, i.e.,
the photon flux is Poissonized.

Reference 6 has suggested that cooperative quenching
in 4 chromophore system will always result in more clearly
expressed sub-Poisson statistics (increasing |£ |). These re-
sults shows that this proposition is valid for bichromophores
only at very low radiation intensities. We note that Ref. 6
employed a square-law approximation equivalent to ignor-
ing the population correlation of the monomers. Of course
this approximation is more realistic for a systemn of many
chromophores rather than for a bichromophore.

DISCUSSION

We will briefly summarize the primary principles and
results from the present study.

The stationary fluctuations in the populations and the
fluorescence photon flux are characterized by paired corre-
lation functions [See Egs. (4}, (5) and (6)—(8) as well as
Figs. 1-3]. Photon correlation has an antigrouping charac-

_ter; it is also responsible for their sub-Poisson statistics. The
- correlation function (6) of fluoréscence photons and the dis-

persion (10) of their number are directly measured by pho-
ton-correlation spectroscopy (see, for example, Ref. 2 and
7). These bear information on the rate constant of cooperat-
ive processes and on the relaxation constants of the chromo-
phores,

The population correlation of the monomers does not
reduce to the photon correlation [compare Egs. (4) and
(7)] since the emission process alters the bichromophore
state. It is clear that the population correlation can be mea-
sured only by means of weakly perturbing effects. Such ef-
fects include quasielastic scattering of test particles such as
photons, neutrons, or slow electrons. The autocorrelation
function of the scattered particle flux is determined by the
dynamic formfactor S, (#) = {p, (1) p¥(0)), where p, (1) is
the Fourier transform of the scatterer density p(r,t) at time ¢
(inferring the density interacting with the scattered parti-
cle); q is the change in the wave vector upon scattering. The
energy distribution of the scattered particles is given by the
Fourier transform in ¢ of this same form factor.

We calculate S, (#) for a symmetric bichromophore

Sq {t)= 2[ fq |2{1 ~+ cosg. R)

+2 (= Podg |2 [C (8) + C(t)cos q -R), (12)

where R is the radius-vector separating the monomers in the
bichromophore; p, and p, are the monomer densities in
states S, and S, respectively; 5 = nyp, + n,p,. Itisclear that
the dynamic form factor of the bichromophore is in fact ex-
pressed through the correlation functions (5) and bears in-
formation on energy exchange constants (1.5).

The authors are grateful to I. G. Ersh, S. G. Rautian,
and B. M. Chernobrod for useful discussions.

"Throughout we will use the notation of Ref. 1. The dmlgnalmn Eg.
(1.25) means Eq. (25) in Ref. 1, etc.
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Four-photon spectroscopy of GaSe: methods of temporal analysis
V.M. Petnikova, M. A. Kharchenko, andV.V. Shuvalov
(Received 27 August 1987; in revised form, 19 January 1988)

Opt. Spektrosk. 65, 1263-1267 (December 1988)

Results of spectroscopic studies of GaSe (293K ) ina range covering the regions of transparency
and of single-photon interband and exciton transitions are presented. A set of nonlinear
spectroscopy methods such as the test beam method and saturation spectroscopy are used to
identify the mechanisms of nonlinearity and characteristic relaxation processes,

INTRODUCTION
Semiconductors and, in particular, GaSe constitute a

complex subject for spectroscopic studies, since the response -

of the medium is governed by several nonlinearity mecha-
nisms, each of them is characterized by its own type of relax-
ation processes with the corresponding times, there is no
universal theoretical model describing the results obtained
by different spectroscopic methods under different condi-
tions, and the experimental data are simultaneously affected
by a number of factors that are difficult to take into account
(dependence of the transmittance of the sample on the inten-
sities, frequencies of the interacting waves, etc.).

The characteristic times of the relaxation processes are

measured by comparing the experimental data with specific _

theoretical models.'~* Therefore, such models significantly
determine the conclusions reached by the authors. General-

~ ly, the experimenters use the simplest models of a given se-

lected (sometimes unjustifiably) relaxation process. The
erection of a more complete theory is complicated by the fact
that the accumulated experimental material actually con-
sists of a set of expertimental data obtained under different
conditions which are not always clearly specified. The phys-
ics of the processes taking place can only be determined
through the comprehensive application of the maximum
possible number of spectroscopic methods under the same
conditions. Combined analysis of the experimental data ob-
tained can yield new information, not attainable by each of
the methods taken separately, on the mechanisms of relaxa-
tion processes. Reference 6 substantiated the need for such
an approach and indicated ways of implementing it.

The present paper includes the results of spectroscopic
studies of GaSe (293 K) in a range covering the regions of
transparency and of single-photon interband and exciton
transitions. The utilization of the capabilities of the experi-
mental arrangement, which was analogous to that described
in Ref. 6, permitted an effective application of a set of meth-
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ods of nonlinear spectroscopy (NS) such as the test-beam
(TB) method and saturation spectroscopy (SS) to the iden-
tification of nonlinearity mechanisms and characteristic re-
laxation processes. - - :

The results obtained by use of methods of degenerate
four-photon spectroscopy (DFPS) and biharmonic pump-
ing (BP) will be published separately.

APPLICATION OF METHODS OF NONLINEAR
SPECTROSCOPY

The NS methods are based on the process of generation

of a wave of nonlinear _polarization with frequency

W4 =@, — &, +w,, also lying in the range studied, and
wave vector K, =, + K, —K,, (/,mn=123). During

~ the experimeitts, depending on the NS method, we recorded

the energy of the corresponding spatial component (fixed
direction of K,) of the field, and controlled the times of ar-
rival, polarization, frequencies, and intensities of the pulses
interacting in the sample.

Each of the NS methods investigates the dependence of
nonlinear response on certain selected variables which deter-
mine the conditions of excitation or probing of the sample.
The classification of the methods is based on their subdivi-
sion into dynamic and quasistationary ones. The former in-
volve temporal analysis of the relaxation of nonlinear re-
sponse. Their resolution is determined by the duration of the
pulses employed (in practice ~25 psec) and is completely
sufficient for the study of nanosecond and subnanosecond
processes (for example, recombination and spatial diffusion
of carriers in semiconductors). In the study of subpicose-
cond dynamics (polarization relaxation), the study of the
frequency of dispersion of nonlinear susceptibility—spectral
analysis of nonlinear response—turns out to be more prom-
ising. This analysis is carried out in the presence of a para-
metric interaction of waves of different frequencies that is
stationary relative to fast relaxation processes. ™ The specif-
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