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Fluorescent optical tomography
with large data sets
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In recent years, optical tomography (OT) of highly scattering biological samples has increasingly relied on
noncontact CCD-based imaging devices that can record extremely large data sets, with up to 109 indepen-
dent measurements per sample. Reconstruction of such data sets requires fast algorithms. The latter have
been developed and applied experimentally in our previous work to imaging of the intrinsic absorption co-
efficient of highly scattering media. However, it is widely recognized that the use of fluorescent contrast
agents in OT has the potential to significantly enhance the technique. We show that the algorithms previ-
ously developed by us can be modified to reconstruct the concentration of fluorescent contrast agents.
© 2008 Optical Society of America
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Optical tomography (OT) is a biomedical imaging mo-
dality that utilizes nonionizing near-infrared light to
probe tissue structure and function [1,2]. It allows
quantitative reconstruction of a three-dimensional
map of absorption and scattering coefficients of tissue
samples as thick as �10 cm with subcentimeter res-
olution [3,4]. One of the most promising applications
of OT is the detection and localization of small tu-
mors in soft tissues, for example, in breast imaging.
It is generally recognized that the use of fluorescent
contrast agents has the potential to significantly en-
hance this technique [5–8]. Thus, a subfield of OT
has emerged in which one seeks to reconstruct the
spatial map of the concentration of fluorescent mol-
ecules. We will refer to this modality as fluorescent
optical tomography (FOT). FOT has been recently
used in vivo to image breast cancer in humans, with
very promising results [8].

Both FOT and nonfluorescent OT depend on nu-
merical inversion of data, which is a very ill-posed
problem [1]. The ill-posedness adversely affects the
quality and spatial resolution of images. We have
demonstrated theoretically [9], in simulations [10],
and experimentally [3] that this problem can be par-
tially alleviated by utilizing very large data sets that
have recently became available with CCD-based non-
contact imagers. By large data sets we mean here
�107 independent measurements. It is logical to as-
sume that FOT would also benefit from the use of
large data sets. However, image reconstruction with
large data sets requires specialized algorithms. In
this Letter, we apply for the first time, to the best of
our knowledge, the fast image reconstruction meth-
ods to FOT imaging.

In the experiments reported here the medium to be
imaged is illuminated by a cw laser beam whose cen-
tral wavelength is �e=775 nm. We have used as the
contrast agent indocyanine green (ICG), whose emis-
sion wavelength is �f�830 nm. The propagation of
light is modeled by the diffusion approximation to the

radiative transport equation with the use of a num-
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ber of additional approximations described below.
Within the accuracy of these approximations, the
densities of electromagnetic energy at the excitation
and the fluorescent wavelengths, ue�r� and uf�r�, obey
a system of two coupled time-independent diffusion
equations [11]:

− D�2ue�r� + �ue�r� = S�r�, �1�

− D�2uf�r� + �uf�r� = �c�en�r�ue�r�. �2�

Here D and � are the intrinsic diffusion and absorp-
tion coefficients of the medium that are related to the
parameters of the radiative transport theory �a (the
absorption coefficient), �s (the scattering coefficient),
and g (the scattering asymmetry parameter) by D
=c /3��a+�s��, �=c�a, where �s�= �1−g��s is the re-
duced scattering coefficient and c is the average
speed of light in the medium. In addition, n�r� is the
number density of the fluorescent molecules, � is the
absorption cross section of an isolated fluorescent
molecule, and � is the quantum efficiency of the fluo-
rescence. Finally, S�r� is an appropriate source term
that describes the radiation at the excitation wave-
length. In deriving Eqs. (1) and (2) we have neglected
the dependence of D and � on the wavelength and
also assumed that ��a�r���c�en�r�. The latter as-
sumption will allow us to linearize the inverse prob-
lem of FOT as shown below.

The diffusion equations (1) and (2) are supple-
mented by the mixed boundary condition �u
+ ln̂ ·�u��r��V=0, where l is the extrapolation dis-
tance, �V is the surface bounding the volume V that
is occupied by the sample, and n̂ is the unit outward
normal to this surface at the point r��V.

For an arbitrary source function we can express
the solutions to Eqs. (1) and (2) as
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ue�r� = �
V

G�r,r��S�r��d3r�, �3�

uf�r� = �
V

G�r,r��a�r��ue�r��d3r�, �4�

where the Green’s function G�r ,r�� satisfies ��r
2

−k2	G�r ,r��=−�1/D���r−r�� and k=
� /D. In the slab
geometry, G�r ,r�� is known analytically [9].

In radiative transport theory light propagating
through the medium is described by the specific in-
tensity I�r , ŝ� at the point r flowing in the direction of
the unit vector ŝ. In the diffusion approximation the
specific intensity is expanded as I�r , ŝ�
= �c /4���u�r�− l*ŝ ·�u�r�	, where u�r� satisfies one of
the diffusion equations (1) and (2) (at the appropriate
wavelength) and l*=1/�*=1/ ��a+�s�� is the transport
mean-free-path. In our experiment the measured
quantity is the specific intensity that exits the slab in
the normal direction. Therefore, we can substitute in
the above formula ŝ= n̂, where n̂ is the same outward
unit normal that appears in the boundary condition.
We then use the latter to express the derivative of
n̂ ·�uf�r� at the point r=rd��V in terms of uf�r� and
obtain

If�rd� = Cd�rd� c
4�

�1 + l*

l
� � G�rd,r�a�r�ue�r�d3r�,

�5�

where we have introduced a phenomenological cou-
pling constant Cd�rs�, which accounts for the surface
area that is mapped onto a given CCD pixel and vari-
ous imperfections of the optical system.

If a narrow beam is incident on a slab of highly
scattering medium in the direction normal to the slab
surface (in the positive direction of the z axis), we
have [9] S�r�=S0�s�e

−�*�z−zs���x−xs���y−ys�. Here S0 is
a constant and rs= �xs ,ys ,zs� is the point at which the
incident beam intersects the sample surface. Using
this source function, the boundary condition, and the
inequality �*�k we can evaluate approximately the
integral in Eq. (3) to obtain [9] ue�r�
=Cs�rs�S0��s� /�*��1+ l* / l�G�r ,rs�, where Cs�rs� is an-
other phenomenological coupling constant. We now
combine this equation with Eq. (5) to obtain

If�rd,rs� = Cd�rd�Cs�rs�
cS0�s�

4��*
�1 + l*

l
�2

	 �
V

G�rd,r�a�r�G�r,rs�d3r. �6�

Here If�rd ,rs� is the intensity measured at the fluo-
rescent wavelength �f, which exits the slab at the
point rd owing to a source beam entering the slab
through the opposite face at the point rs.

The unknown coupling constants Cd�rd� and Cs�rd�
can be eliminated by normalizing Eq. (6) to the inten-
sity Ie�rd ,rs�, which is measured at the excitation

wavelength. Indeed, arguments similar to those
given above lead to the expression Ie�rd ,rs�
=Cd�rd�Cs�rs��cS0�s� /4��*��1+ l* / l�2G�rd ,rs�. We then
define the data function 
�rd ,rs� as


�rd,rs� = DG�rd,rs�
If�rd,rs�

Ie�rd,rs�
. �7�

In the above formula If�rd ,rs� and Ie�rd ,rs� are mea-
sured experimentally, while DG�rd ,rs� is known ana-
lytically. We have defined the data function in this
particular form because the dimensionless variation
of the absorption coefficient, a�r� /�, is related to 
 by
the following linear integral equation:

k2�
V

DG�rd,r�
a�r�

�
DG�r,rs�d3r = 
�rd,rs�. �8�

This equation follows directly from Eqs. (1) and (2)
without additional approximations. The left-hand
side of Eq. (8) is linear in the unknown function a�r�,
because in writing Eqs. (1) and (2) we have assumed
that ��a�r�. This condition has allowed us to re-
place the total absorption coefficient in the left-hand
sides of these equations by the intrinsic absorption
coefficient �. Moreover, Eq. (8) is independent of the
unknown coupling coefficients Cd and Cs.

We now notice that Eq. (8) has exactly the same
functional form as the integral equation of linearized
nonfluorescent OT that was inverted in [3,9,10]. We,
therefore, can apply the image reconstruction algo-
rithm developed in these references to invert Eq. (8)
and find the function a�r� given a set of measure-
ments of 
�rd ,rs�. Note that the functions DG�rd ,rs�
in Eq. (7) and DG�rd ,r�, DG�r ,rs� depend analyti-
cally on the two parameters k=
� /D and l (but not
separately on D).

Our experimental setup is described in detail else-
where [3]. The sample chamber we have used is a
rectangular box of a depth of 5 cm with square faces
of an area of 50 cm	50 cm constructed of clear
acrylic sheets. The beam is scanned on one face of the
sample, and the opposite face is imaged by the CCD
and a lens. The chamber is placed equidistantly from
the CCD and the laser source along the optical axis
at a distance of 110 cm and filled with a scattering
medium that consists of a suspension of 1% Intralipid
in water. By numerically fitting [12] the Fourier
transform of Ie�rd ,rs� with respect to the transverse
coordinate of the detector to an analytical formula
given in [9], we have found that, for this medium, k
=0.54 cm−1 and l=0.9 cm. In each experiment, we ac-
quired a data set of �1.5	108 source–detector pairs
as described in detail in [3]. The fluorescence was re-
corded after passing through a narrow bandpass fil-
ter (central wavelength 830 nm), which is placed in
front of the CCD camera lens.

We inserted two clear glass tubes (inner diameter
16.5 mm, outer diameter 19 mm, axis-to-axis separa-
tion 69 mm) into the chamber so that the tube axes
were parallel, vertically aligned, and equidistant
from the slab surfaces. The tubes contained the same

Intralipid solution as the surrounding medium but,
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in addition, varying concentrations of ICG. The re-
construction was carried out by inverting Eq. (8). The
result (reconstruction of the cross section of the tubes
in the central slice) is shown in Fig. 1. Two recon-
structions have been made: In the first case, the
tubes have the same ICG concentration �1 mg/L� but
one of the tubes is inserted only halfway. In the sec-
ond case, both tubes are fully inserted, but the second
tube has a higher ICG concentration �2 mg/L�.

As can be seen, the shapes of the cylinders are well
reconstructed. We have found that the reconstructed
distance between the cylinders’s axes is about
68 mm, which is within 1 mm of the independently
measured distance of 69 mm. The reconstructed di-
ameters of the cylinders are, however, overestimated:
the obtained values are 30 mm for the concentration
of 1 mg/L and 40 mm for 2 mg/L. We believe that
this overestimation is explained by the ill-posedness
of the inverse problem of FOT. Thus, overestimation
is stronger for the ICG concentration of 2 mg/L when
the signal-to-noise ratio is larger, and the ill-
posedness is expected to have a stronger effect.

It can be seen from Fig. 1 (right panel) that the re-
constructed ICG concentration depends nonlinearly
on the actual concentration. Thus, the image of the
tube with 2 mg/L of ICG is weaker than the image of
the tube with 1 mg/L of ICG. This is explained by the
onset of fluorescence quenching, which takes place at
sufficiently high ICG concentrations. In our experi-
ment the measured fluorescent intensity was maxi-
mum at the ICG concentration of about 1 mg/L (for
ICG dissolved in a 1% Intralipid solution inside the
tubes; data not shown). A linear proportionality of the
reconstructed and the actual concentrations can be
expected at smaller ICG concentrations, as was in-

Fig. 1. (Color online) Reconstruction of a�r� for two cylin-
ders filled with an Intralipid solution identical to the sur-
rounding fluid but containing variable amounts of ICG.
The field of view is 15 cm	15 cm. (left) The ICG concentra-
tion is 1 mg/L in both tubes, but the left tube is immersed
only halfway (with respect to the field of view). (right) Both
tubes are immersed all the way but have different ICG con-
centration: 1 mg/L in the left tube and 2 mg/L in the right
tube.
deed experimentally observed [6]. Note that the lin-
earity can be expected to extend to substantially
larger ICG concentrations if ICG is dissolved in hu-
man blood rather than in water [13]. In this reference
the maximum of fluorescence intensity was observed
at an ICG concentration of 80 mg/L. The explanation
of this effect, given in [13], is that in the case of the
water solvent ICG molecules form aggregates, which
results in a significant decrease of the fluorescence
quantum yield. However, in the case of blood, aggre-
gation is inhibited by binding of the ICG molecules to
plasma proteins up to much higher ICG concentra-
tions.

In summary, we have demonstrated for the first
time reconstruction of a fluorescent agent concentra-
tion in a highly scattering medium using a noncon-
tact OT device and data sets in excess of 108 indepen-
dent measurements. We have demonstrated that the
fast image reconstruction algorithms developed by us
earlier for nonfluorescent OT modalities are fully
adaptable to FOT.
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