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We study numerically the discrete dispersion relations and waveguiding properties of relatively short linear
chains of spherical and spheroidal silver nanoparticles. Simulations are based on the Drude model for the dielec-
tric permittivity of metal and on the dipole approximation for the electromagnetic interaction of particles. We also
simulate the dynamics of femtosecond optical pulse propagation along such chains. In the case that we consider
(10 particles per chain), reflections from the chain terminals play a significant detrimental role. We show that
dissipative traps can be used to reduce the effects of reflections. We also show that chains composed of oblate
spheroids with sufficiently small aspect ratio (nanodisks) have better waveguiding properties when compared to
chains made of particles with other spheroidal shapes. This includes a slower rate of decay, larger group velocity,
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and larger bandwidth. © 2014 Optical Society of America
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1. INTRODUCTION

The waveguiding properties of chains of closely spaced met-
allic nanoparticles (plasmonic chains) have been extensively
discussed in the physics and engineering literature over the
past decade or so [1-11]. Such systems can be useful for trans-
mission of modulated optical signals with a high degree of
spatial confinement. Localization of electromagnetic fields
is an important consideration in applications related to the
development of nanoscale optical elements. For instance,
the subwavelength spatial localization of optical excitations
in plasmonic chains can be expected to minimize parasitic
interactions between different elements in an optical circuit.
Alternative designs of nanoscale waveguides have also been
considered in the literature, including nanowires [12,13] and
nanogrooves on a flat surface [13,14], as well as strips, ridges,
and other similar structures [15]. It is difficult to tell at present
which design is more promising. However, plasmonic chains
are characterized by the exceptional tunability of their physi-
cal properties.

Optical signals propagate in plasmonic chains in the form of
surface plasmon polaritons (SPPs), which are collective exci-
tations of the conductivity electrons and the electromagnetic
field. SPPs can be characterized by a dispersion relation, and
from the latter one can determine the group and phase veloc-
ities. Dispersion relations for relatively long plasmonic chains
consisting of N = 10° particles have been studied extensively
for both spherical [3,5,16-24] and nonspherical particle
shapes [1,4,17]. In particular, it was shown that SPP group
velocities in chains of spherical particles are much smaller
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than the speed of light, c. As a consequence, the bandwidth
of such waveguides is severely limited. This problem can
be rectified by using nonspherical particles [4,25]. In plas-
monic chains made of spheroidal particles with sufficiently
small aspect ratio, the group velocities can be of the order
of ¢, and the spectral interval where the dispersion relation
is close to linear (the bandwidth) can be sufficiently large
to allow for propagation of well-shaped wave packets [4].
However, ohmic losses strongly affect SPPs in long chains.
There exist designs wherein transmission of wave packets
through long chains is possible with virtually no decay of
the amplitude [26,27], but these designs require large energy
input at the first particle of the chain, which can cause signifi-
cant heating.

Due to this and other reasons, relatively short chains are of
interest. In plasmonic chains consisting of N < 20 particles,
ohmic losses are negligible, which is a valuable property
for practical applications. Also, short chains can be required
for miniaturization purposes. Dispersion relations in relatively
short plasmonic chains of spherical particles have been con-
sidered in the literature [18,20,28]. However, short plasmonic
chains also have disadvantages, in particular, the parasitic ef-
fect of SPP reflections from the chain terminals. Propagation
of SPP wave packets in short chains, particularly in the case in
which the chains are made of nonspherical particles, has
received little attention so far.

In this paper, we study numerically the waveguiding prop-
erties of short chains of both spherical and spheroidal par-
ticles and introduce the idea of a dissipative trap, which
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can suppress SPP reflection from the chain terminals. We con-
sider perfectly ordered chains and note that slight position
disorder is not expected to have a dramatic effect [29-31].
The paper is organized as follows. In Section 2, we formu-
late the theoretical model, which is used in the simulations.
Section 3 summarizes the physical parameters and simulation
methods that are used in the remainder of this paper. Section 4
presents the numerical results for dispersion relations and
group velocities. In Section 5 we present real-time numerical
simulations of femtosecond pulse propagation through short
chains. Section 6 contains a summary of obtained results.

2. THEORY

In this work, we write the equations that describe the electro-
magnetic interaction of particles in the frequency domain.
Correspondingly, all physical quantities that enter these equa-
tions are functions of the frequency w. However, description
of transient processes requires transformation of the
frequency-domain solutions into the time domain. For any
frequency-domain function f(w), we write

50 = [ £l exp-ian 2. M)

For economy of notations, we have used the same symbol for
the time- and frequency-domain functions, and the same ap-
proach is used in the rest of the paper. This should not cause
confusion because the domain in which a function is consid-
ered should always be clear from the context.

A. Electromagnetic Interaction Model

Consider a linear chain consisting of N particles of spherical
or spheroidal shape (see Fig. 1). The centers of spheroids are
located along the Z axis at the points z,, = nh, where h is the
chain period. We assume that the spheroids are electrically
small and work in the dipole approximation, according to
which each spheroid is characterized by the dipole moment
d,(w) and

d, (@) = A(@)E, (@) = a(@)[ES" (o) + ES™(0)].  (2)

Here, E, (w) is the electric field external to the nth dipole,
which is given by a superposition of the field incident from
external sources, ES“C) (w), and the field scattered by all other
dipoles in the chain, ES“*Y (w), and a(w) is the polarizability
tensor. The relevant mathematical details of the dipole
approximation are given elsewhere [4,29,32].

A simplification of Eq. (2) can be obtained if we account for
certain special symmetries. In this paper we consider linear
chains composed of spheroids, which are all similarly oriented
in space so that one of the principal axes of any spheroid is
parallel to the chain (see Fig. 1). In this case, SPPs that are
polarized transversely and parallelly to the chain are electro-
magnetically decoupled. Correspondingly, the vector Eq. (2)
can be factored into three independent scalar equations. Each
scalar subsystem contains the appropriate principal element
of the polarizability tensor a(w). In what follows, we consider
differently polarized SPPs separately and characterize each
case by a set of complex scalar amplitudes d,(w). The nota-
tion a(w) will refer to the appropriate principal element of the
polarizability tensor.
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Fig. 1. Schematic view of chains used in the simulations.

B. Discrete Dispersion Relations
According to the standard approach, we determine the
dispersion relation by seeking nontrivial solutions to the homo-
geneous coupled-dipole equation, that is, for E{" (w) = 0.
In the absence of external field and for a fixed polarization
of SPPs, Eq. (2) assumes the form

N
(@) = (@) (1= 84) G (@), (). ®3)
m=1

Here, G, (w) is the diagonal element of the Green’s tensor for
the electric field in free space; the mathematical form of G,,,,, ()
is given, for example, in [4,29,32]. The homogeneous system of
N Eq. (3) has a nontrivial solution if and only if

det[M ()] = 0, C))
where the matrix elements of M (w) are given by the expression

Mnm(w) = Opm — (1 - 5nm)a(w)Gnm(w)' ®)

The complex roots Q; of Eq. (4) are known as the natural
frequencies [33,34]. We note that if Q; is a natural frequency,
then -Q} is also a natural frequency, assuming that we have
used correct analytical expressions for a(w) and G,,,, (®). Fur-
ther, it can be expected on physical grounds that, in systems
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without gain, all natural frequencies satisfy Re(€;,) Im(€2;,) < 0
[equivalently, Im(Q?) < 0]. In other words, oscillations with
positive frequencies are decaying with time [17,18,29].

In the general case, Eq. (4) is a transcendental equation,
which has an infinite number of roots even if the number
of particles is finite. If one uses the analytical Drude formula
for the metal permittivity (as is done here) and the quasi-static
approximation for the Green’s function, then Eq. (4) becomes
an algebraic equation with exactly 2N roots, taking into ac-
count the degeneracy noted above. In this paper, the quasi-
static approximation is not used. Therefore, the number of
roots is infinite and we use a numerical root-searching pro-
cedure (described below) to find the first N natural frequen-
cies with Re(€2;) > 0 and the smallest values of —-Im(€2;) > 0.
We have found empirically that, for the physical system con-
sidered in this paper, the natural frequencies outside of this
finite set have very large values of -Im(€2;) and the corre-
sponding oscillation modes are characterized by very short
lifetimes. Such modes do not contribute noticeably to any
physical observables.

The above procedure defines a set of complex natural
frequencies Q;,, k = 1,...,N. To find the dispersion relation,
we use the approach of [18]. Namely, a real wave number
q;, corresponding to the natural frequency € is defined by
the expression

_(N-2my +1x

“ETNN-D W ©

where my, is the kth mode index. To compute m;,, we first need
to determine the eigenvectors (the polarization modes) that
correspond to each natural frequency. The procedure for
computing my, is explained next.

Consider the eigenvalues 1, (w) and eigenvectors |x,, (w)) of
M(w), which satisfy the frequency-parameterized eigenpro-
blem

M ()2 (@) = An(@) ]2 (@)). )

Since the size of M(w) is N, there exist at most N linearly in-
dependent eigenvectors |x,(w)). In practice, this number is
equal to N because M(w) is not defective. We now consider
these quantities at w = ;.. Since det[M(Q;)] = 0, at least one
of the eigenvalues 4,,(€2;) is zero. It can be expected that the
zero eigenvalues are not degenerate, and we have confirmed
this fact numerically. If we arrange the eigenvalues in the
ascending order, then

0 =21(Q) < () < ... <An(C).

The eigenvectors that correspond to the zero eigenvalues,
l9x) = |21(y)), are the waveguiding modes. To find the mode
index my, we determine the number of times the expression
Re(ilg;), viewed as a function of 7, changes sign. Here i =
1,...,N labels the eigenvector components. The mode index
my, is defined as this number of sign changes plus 1.

Using the above prescription, we can compute the wave
number ¢, for each natural frequency ;. Ordered pairs
(q,€;) define the discrete dispersion relation of the
chain. We note that the approach described here is the dis-
crete version of the complex-w approach as defined in [35].
According to this approach, a complex-valued frequency is
found for each purely real wave vector q.
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3. SIMULATION PARAMETERS AND
METHODS

In the simulations, we consider plasmonic chains consisting of
oblate and prolate spheroids (including the special case of
spheres) with different aspect ratios £ = b/a, where b and
a are the shorter and longer semi-axes. In the case of prolate
spheroids, their axes of symmetry (the longer axes) are
aligned perpendicular to the chain (along the X axis as shown
in Fig. 1). In the case of oblate spheroids, the axes of sym-
metry (the shorter axes) are aligned parallel to the chain
(along the Z axis). The shorter semi-axes of all spheroids
(radius in the case of spheres) are fixed at b = 8 nm. The
longer semi-axes (always oriented perpendicularly to the
chain) vary from a =8 nm (in the case of spheres) to
a = 20 nm. The latter case corresponds to the spheroid aspect
ratio £ = b/a = 0.4. The center-to-center separation of near-
est spheroids in a chain is in most cases fixed at
h = 24 nm. However, in some of the figures, k varies from
24 to 32 nm to illustrate the effect of interaction strength
on the dispersion relation. The number of particles in the
chains is set in most cases to N = 10. However, when we con-
sider below a dissipative trap, we work, essentially, with a
N = 60 chain but assume that the signal is read out at the site
of the 10th dipole. The rest of the chain (the tail) serves in this
case as a trap that suppresses the effect of parasitic
reflections.

A special comment on SPP polarization is necessary. In all
cases that we consider, the longer axes of the spheroids are
perpendicular to the chain as shown in Fig. 1. It can be seen
that, in the case of oblate spheroids, the chains are cylindri-
cally symmetric. As a result, all SPP polarizations that are
orthogonal to the chain are equivalent. However, this is not
so for the case of prolate spheroids, wherein the cylindrical
symmetry of the chain is absent. For prolate spheroids, we
will only consider the transverse SPP polarization that is
aligned with the longer axes of spheroids. We will refer to this
polarization that is transverse to the chain as T polarization
and to the polarization that is parallel to the chain as L
polarization.

Although we use the retarded Green’s functions G,,, (@) to
describe the electromagnetic interaction of particles in
a chain, the particles themselves were assumed to be
sufficiently small for the quasi-static approximation to be
applicable for the purpose of computing the polarizability
a. To this end, we use the standard electrostatic result for
spheroids [34] with the account of first nonvanishing radiative
correction [36,37]. Relevant formulas are given, for example,
in [38]. These formulas contain the permittivity of particles
¢(w). For the latter, we have used the Drude formula

2

_ L.’ (8)
(o + iy)

e(w) = €
where y is the relaxation constant, w, is the plasma frequency,
and ¢, — 1 is the contribution to the permittivity due to the in-
terband transitions. In the simulations, we have used
the experimental parameters of silver, viz., y/w, = 1/526.3
and €y = 5.

To find the natural frequencies Q;,, we use the following
method. First, we compute |det[M(w)]| for the argument
sampled on the rectangular grid in the complex plane, that
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is, for w = wy, = (n + im)A, where i = /=1, A is the lattice
step, and n, m are integers. This task is computationally fea-
sible because the matrix M is of sufficiently small size. We say
that w,,, is alocal minimum for a given grid if | det{M (®,,,,,)]| is
smaller than | det[M(w,;,,y)]| in the eight neighboring points
(n'm’). We then select the first N local minima €, located
in the right half-plane with the smallest values of —Im(€;).
Next we recompute | det[M (w)]| on a finer grid around each
local minimum until the condition det[M(Q;,)] = 0 is satisfied
with a predetermined precision.

Finally, in some of the figures, we show continuous
dispersion curves for infinite chains. These curves were com-
puted by the method described in Section 3.A of Ref. [4]. We
note that in this method a purely real dispersion relation is
sought for an ideal (lossless) metal, that is, for the case in
which Drude relaxation constant y is set to zero in Eq. (8).
It was pointed out recently [35] that this approach is not
always accurate in the presence of realistic losses. However,
for the parameters used, we have obtained reasonable quali-
tative agreement between the discrete dispersion relations of
a finite chain with realistic losses and the continuous
dispersion relations of infinite chains made of lossless metal.
We believe that the numerical discrepancies that are present
in the data can be explained for the most part by the effects of
finite length rather than by the effects of losses.

4. RESULTS: DISPERSION RELATIONS

The first task one faces in computing the discrete dispersion
relations is determination of the mode indices m. Figure 2
illustrates how these quantities were determined for a chain
of spherical particles (see figure caption for details). Analo-
gous plots for other parameters of the chain and other polar-
izations of SPPs look very similar and are not shown here.

We note that the dashed lines connecting the centered sym-
bols in Fig. 2 are shown only to guide the eye; the intermediate
values of the displayed functions have no physical meaning.
However, the discrete data points shown in the figure can be
viewed, approximately, as samples of a smooth function
cos(qz + ¢), where ¢ is a phase shift, taken at the sampling
points z; = hi. This identification is obviously not very accu-
rate due to the finite length of the chains (hence, the effects of
scattering and reflection from the chain terminals). However,
in the numerical example considered here we can find such
values q that, sufficiently far from the chain ends, the discrete
points sample the smooth function with reasonable precision.
The above observation justifies the use of the mode index to
determine the wave numbers g, of the waveguiding modes.
The procedure becomes increasingly precise as the number
of particles in the chain is increased.

In Fig. 3, we show the dispersion relations and the group
velocities, defined here as v, = dRe(2)/dq [39], for chains
made of spherical particles (@ = b = 8 nm) with different
values of the center-to-center distance k. We also plot in this
figure the continuous dispersion curves of infinite chains,
which were computed as described in [4]. It can be seen that
the discrete and continuous dispersion relations are in quali-
tative agreement, with the most pronounced differences vis-
ible near the light line. This is not surprising because close to
the light line SPPs exist due to the interaction (constructive
interference) of a large number of particles. In the relatively
short chains considered here, this effect is absent. Overall, the
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Fig. 2. Illustration of the waveguiding modes for different natural
frequencies ; and different corresponding mode indices m;,. Eigen-
vector components Re(i|g,) are plotted as functions of 7. Computa-
tions were performed for a chain of N = 10 spherical particles of
radius 8 nm, center-to-center separation of h =32 nm, and L
polarization of SPPs. The modes shown correspond to the natural
frequencies with the real parts (a) Re(Q;) = 0.3827w,,
(b) Re(Qy) ~ 0.3724w,, and (c) Re(;) ~ 0.37100,. Solid horizontal
lines indicate the positions of zero of the vertical axis for each mode.
Dashed lines are drawn to guide the eye.

good qualitative agreement between the discrete and continu-
ous dispersion curves for chains consisting of only 10
particles, which we have confirmed numerically, could not
be expected a priori.

Imaginary parts of the natural frequencies for a chain of
spherical particles are shown in Fig. 4. The quantities
-Im(Q;,) determine the rate of decay of the waveguiding
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Fig. 3. Dispersion relations (top) and group velocities (bottom) for a
chain of N = 10 spherical particles 8 nm in radius for T (circles) and L
(triangles) SPP polarization. Centered symbols represent the discrete
dispersion relations of finite chains. Lines show the respective results
in infinite chains. The center-to-center distance £ is 24 nm (red color,
solid lines), 28 nm (blue color, long dash), and 32 nm (green color,
short dash).




Rasskazov et al.

0.003 . . :
~ Im(Q)

A “r
0.002} = ]

L

N : v = w,/526.3
0.001 + . @ Y Y— L p— Y — @ N

: 7=0 qh/m
O i i at e ety
0 0.25 0.5 0.75 1

Fig. 4. Imaginary parts of the natural frequencies for a chain whose
dispersion relation is illustrated in Fig. 3 (the one with / = 24 nm)
versus the wave number q for T (circles) and L (triangles) SPP polari-
zation. Calculations were performed for different values of the Drude
relaxation constant (realistic and lossless metal), as labeled.

modes due to both ohmic and radiative losses. The contribu-
tion of purely radiative losses can be approximately deter-
mined by computing -Im(€,) for an ideal (lossless) metal,
that is, for the case in which y = 0. These data points are also
shown in Fig. 4. It can be seen that radiative losses dominate
for the waveguiding modes with relatively small wave num-
bers, whose dispersion points are close to the light line. These
modes are strongly affected by the loss of translational invari-
ance of the chain and, as a result, are “leaky.” In contrast, the
modes with relatively large wave numbers are almost free
from radiative losses. These modes are quantitatively similar
to the modes of infinite chains. By comparing the data for y =
0 and y = w,/526.3, we can conclude that ohmic losses domi-
nate for all modes with the mode indices m; > 2.
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The data shown in Fig. 3 are in agreement with the previ-
ously reported observation [4] that the SPP group velocities in
chains of spherical particles are very small compared to c,
which is not conductive for waveguiding applications. It
was also shown in [4] that the SPP group velocities can be
substantially increased in chains of nonspherical particles
whose longer semi-axes a are oriented perpendicularly to
the chain, while the shorter semi-axes b are parallel to the
chain, assuming that we keep the ratio k/b fixed, where h
is the center-to-center separation of spheroids. This is the
physical situation that we consider next. Namely, we now
compute the discrete dispersion relations and group velocities
for chains of prolate and oblate spheroids with varying aspect
ratios £ = b/a. In these simulations, the center-to-center sep-
aration is fixed to ~ = 24 nm, and the shorter spheroid semi-
axes (always oriented parallel to the chain) are fixed at
b = 8 nm. We therefore have /b = 3 in all cases considered.

In Fig. 5 we show the dispersion relations and group veloc-
ities for chains of prolate and oblate spheroids. It can be seen
that the SPP group velocities in the case of spheroids with £ =
0.4 are significantly larger than in the case of spheres. For ex-
ample, for oblate spheroids we obtain |v,| ~ 0.10c for L polari-
zation and |v,| = 0.09¢ for T polarization. This is an order of
magnitude larger than the corresponding group velocity val-
ues in chains of spherical particles, yet still an order of mag-
nitude smaller than ¢. Thus, we do not achieve the same high
group velocities (of the order of ¢ or even larger) as in [4]. For
this, even smaller aspect ratios are required. However, further
reduction of the aspect ratio results in increased radiative
losses. This effect is not present in infinite chains where ra-
diative losses are absent in principle, but in the short chains
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Fig. 5. Dispersion relations (top) and group velocities (bottom) for chains consisting of N = 10 prolate (left) and oblate (right) spheroids for T
(circles) and L (triangles) SPP polarization. Calculations were performed for fixed center-to-center distance & = 24 nm, fixed small semi-axis
b = 8 nm, and varying long semi-axis a, which corresponds to the following aspect ratios: £ = b/a:0.4 (red, solid lines), 0.6 (blue, long dash),
and 0.8 (green, short dash). The black dotted line corresponds to the light line.
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Fig. 6.

Imaginary parts of the natural frequencies for chains of N = 10 prolate (top) and oblate (bottom) spheroids for L polarization (left) and T

polarization (right). Aspect ratio ¢ = b/a as labeled. The shorter semi-axis is fixed at b = 8 nm, and the center-to-center particle separation is

h = 24 nm.

considered here, it is significant. The dependence of radiative
losses (imaginary parts of the natural frequencies) on the as-
pect ratio is illustrated in Fig. 6. It can be seen that the few
waveguiding modes that are most affected by the finite length
of the chain (typically, the three modes with the smallest wave
numbers) have radiative decay rates that are strongly affected
by the aspect ratio. Already at & = 0.4, these losses are signifi-
cant, and further reduction of ¢ appears, therefore, to be im-
practical in the case of short chains. We further observe that
the decay rates are typically smaller in the case of oblate
spheroids.

We conclude this section by noting that reducing the aspect
ratio of spheroids in finite chains results in larger SPP group
velocities but also in larger radiative losses. Based on the
analysis of dispersion relations (Figs. 3 and 5) and radiative
decay rates (Figs. 4 and 6), it can be stated that short linear
chains of oblate spheroids are more suitable for transmission
of optical pulses than chains of spheres or prolate spheroids.
Moreover, the aspect ratio of £ = 0.4 appears to be an accept-
able compromise between the need to increase the SPP group
velocity and to reduce radiative losses.

5. RESULTS: TRANSIENT PROCESSES

To simulate wave packet propagation in the time domain, we
use the approach described in Ref. [4]. We assume that the
first particle in the chain is illuminated by a Gaussian pulse
with center frequency w, and spectral width Aw = 2/A¢,
where At is the pulse duration. Then we calculate the dipole
moments d,,(?) in real time using Eq. (1). We assume that the
incident field illuminates the first particle in the chain only.
Correspondingly, we set ES"” = es,, in Eq. (2), where e is
the vector of polarization. We then solve Eq. (2) numerically
by direct matrix inversion for a set of discrete frequencies
sampled with sufficiently high density and in a sufficiently

wide interval. Finally, we obtain the real-time dipole moments
d,(t) by evaluating the integral (1) numerically by the
trapezoidal rule.

In what follows, we consider SPP propagation in chains of
spheres and spheroids. We use the chain parameters that can
be considered as “optimal” for a given particle shape. In the
case of spheroids, we use b = 8 nm, a = 20 nm (this corre-
sponds to £ =b/a =04), and h =24 nm (k/b = 3). For
comparison, we also show the results for spheres with
a =b =8 nm. The pulse duration is set to At =1fs. We
chose the central frequencies of the pulses, wy, to be in the
range of the real parts of the natural frequencies of a given
chain with the mode indices m;, > 2. This choice ensures ef-
fective coupling of the incident electromagnetic energy to the
waveguiding modes of the chain. We have used different
central frequencies for different chains and different SPP po-
larizations, and the specific values of w, are shown in the
figure labels. We plot the dimensionless function

dy (1)
d1(0)

Falt) =‘ ©)

The normalization factor in this formula is somewhat arbi-
trary, and it is only used to obtain a numerical result of the
order of unity. Finally, time will be displayed in all plots in
the units of
T="h/c. 10)
In Fig. 7 we illustrate the time evolution of F,(¢) in a chain
of spherical particles. As follows from the data of Fig. 3, wave
packets in such chains propagate faster in the case of L polari-
zation. From the physical point of view, smaller values of
group velocity cause longer interaction of SPPs with metal
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T-pol; wo = 0.3783w) L-pol; wo = 0.3696w,
Fig. 7. Propagation of wave packets in a chain of N = 10 spherical
particles with the radius @ = b = 8 nm for the SPP polarizations and
central pulse frequencies as labeled. The quantity F,, (¢) is shown as a
function of the index 7 that labels the particles at different instances
of time ¢. Here and in subsequent figures, arrows indicate the direction
of wave packet propagation. The same vertical scale from 0 to 1 is
used in all subplots of this figure. The incident pulse duration is
At =1fs.

and larger ohmic losses as a consequence. In agreement
with this observation, we have F,(18007) ~ 0.2 in the case
of T polarization and F((9007) ~ 0.4 in the case of L
polarization.

The pattern of wave packet propagation changes substan-
tially when we replace spheres with spheroids. Consider first
the case of prolate spheroids, which is illustrated in Fig. 8. As
was discussed above, the SPP group velocity in such chains is
several times higher than in chains made of spherical par-
ticles. Indeed, the wave packets shown in Fig. 8 reach the
end of the chain approximately six times faster for T polari-
zation and two times faster for L polarization as compared to a
chain of spherical particles with the same ratio h/b (Fig. 7).
Correspondingly, SPP decay is not as pronounced in Fig. 8 as
it is in Fig. 7.

The most favorable waveguide configuration in terms of
propagation time and total attenuation is a chain of oblate
spheroids. Electromagnetic interaction of particles in this
case is the strongest when compared to all other chains with
the same ratio of 2 /b. Correspondingly, the group velocities
are largest and SPP decay is slowest. SPP propagation dynam-
ics in chains of this type are illustrated in Fig. 9. It can be seen
that the signal reaches the end of the chain in only 1507 =
12 fs and almost without decay in the cases of both T and
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Prolate Spheroids; N = 10

Fn(t) t=0 Fn(t) t=0
— —
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T T T T T T T T T T T T T T T T
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— —
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t = 2007 t = 2007

1 3 5 7 9 1 3 5 7 9
T-pol; wo = 0.2866w, L-pol; wo = 0.3822w,
Fig. 8. Same as in Fig. 7 but for a chain of prolate spheroids with

a=20nm, b=8nm (£ =b/a=04), and h =24 nm. The same
vertical scale from 0 to 1.2 is used in all subplots of this figure.

L polarization. However, multiple reflections from the chain
terminals can clearly play a detrimental role in information
processing.

Oblate Spheroids; N = 10

Fult) t=0

Fult) t=0

1 3 5 7 9 1 3 5 7 9
T-pol; wo = 0.2993w,, L-pol; wo = 0.3894w,
Fig. 9. Same as in Fig. 7 but for a chain of oblate spheroids with

a=20nm, b=8nm (£ =b/a=04), and k=24 nm. The same
vertical scale from 0 to 1.5 is used in all subplots of this figure.
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Oblate Spheroids; N = 10
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Fig. 10. Propagation of a wave packet in the same chain of oblate
spheroids as in Fig. 9 but with N = 60 particles. It is assumed that
the signal readout occurs at the site n = 10 (indicated by the vertical

line). The rest of the chain is used as a dissipative trap whose function
is to suppress parasitic effects of reflections.

To avoid the problem noted above, we propose to use
somewhat longer chains but read out the signal at an inter-
mediate site. The rest of the chain (the tail) functions in this
case as a dissipative trap. In the simplest case that we con-
sider here, the trap has the same parameters h, b, and a as
the “working” segment of the chain. Violation of this condition
can cause parasitic reflections at the junction. However, we
note that other types of traps are also possible. What is impor-
tant here is that the working segment of the chain and the trap
are impedance-matched. Technologically, traps can be placed
beyond the working layer of a chip to minimize interference
with the working logical elements in the basic layer.

We illustrate the idea of an absorptive trap in Fig. 10, where
we consider a chain of N = 60 oblate spheroids of the same
type as were used to generate the data for Fig. 9. We assume,
however, that the signal is read out at the n = 10 site. As a
wave packet travels beyond this site to the far end of the
chain, it experiences decay due to ohmic losses, and the
amplitude of the first reflection that arrives at the readout site
is already negligibly small.

6. SUMMARY

We have used the dipole approximation and the fully retarded
electromagnetic interaction model to compute numerically
the waveguiding modes and discrete dispersion relations of
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short (N = 10) plasmonic chains of silver nanoparticles of
both spherical and spheroidal shape. We have also simulated
the dynamics of femtosecond wave packet propagation in
such chains. We have found that the most efficient transport
of plasmonic excitations (that is, with minimum decay and
maximum group velocity) occurs in chains of oblate spheroids
with sufficiently small values of the aspect ratio b/a (e.g.,
b/a = 0.4). Further reduction of the aspect ratio allows one
to further increase the group velocities but also affects large
radiative losses in finite chains.

Reflection of wave packets from the terminals of short
chains results in an overlap of the reflected and direct pulses.
This parasitic effect is detrimental for information processing.
We have shown, however, that the use of a simple dissipative
trap, which is placed at the far end of the chain, can reduce the
amplitude of the reflected signal by an order of magnitude or
more. The dissipative trap must be impedance-matched to the
working segment of the waveguide, and the simplest configu-
ration in which such matching takes place is simply an
additional segment of the same chain. If this approach is used,
the signal is read out at an intermediate site of a chain. The
chain tail beyond the readout site serves then as a dissipative
trap. We have illustrated the reduction of parasitic effects at
the readout site in numerical simulations (Fig. 2).
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