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We show that the diffusion approximation (DA) to the radiative transport equation, which is commonly used in
biomedical optics to describe propagation of light in tissues, contains a previously unexplored adjustable parameter.
This parameter is related to the rate of exponential decay of the reduced intensity. In conventional theories, there are
two distinct choices for this parameter. However, neither of these choices is optimal. When the optimal value for the
parameter is used, the resulting DA becomes much more accurate near the medium boundaries, e.g., at the depth of
up to a few l�, where l� is the transport mean free path (typically, about 1 mm in tissues). We refer to the new
adjustable parameter as the reduced extinction coefficient. The proposed technique can reduce the relative
error of the predicted diffuse density of the optical energy from about 30% to less than 1%. The optimized DA
can still be inaccurate very close to an interface or in some other physical situations. Still, the proposed development
extends the applicability range of the DA significantly. This result can be useful, for instance, in tomographic
imaging of relatively shallow (up to a few l� deep) layers of tissues in the reflection geometry. © 2018 Optical

Society of America

OCIS codes: (010.5620) Radiative transfer; (290.1990) Diffusion; (170.3660) Light propagation in tissues.
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1. INTRODUCTION

Derivation of the diffusion approximation (DA) to Boltzmann’s
equation is a fundamental theoretical result that explains the
emergence of diffusion phenomena from complex nonequili-
brium kinetics. In the context of biomedical optics, the diffusion
equation (DE) is frequently used to approximate the solutions to
the stationary or time-dependent radiative transport equation
(RTE). Many optical imaging modalities, such as diffuse optical
tomography [1,2], are based on inverting the DE. Even though
inversion of the RTE has also been developed [3–5], DA remains
the mainstay of optical tomography.

While various derivations of the DA have been known for a
long time (e.g., see [6]), a detailed investigation of the subject
started in the 1990s, with researchers motivated by the newly
emerging application in optical tomography and imaging. It
has been generally understood that the DA is applicable when
μa ≪ μs, where μa and μs are the absorption and scattering
coefficients of the medium [7], and then only sufficiently far from
the source of radiation (assumed to be localized) and from the
medium boundaries. However, the exact conditions of applicabil-
ity of the DA or the associated error estimates proved to be difficult
to obtain.

In part, this is due to a number of uncertainties inherent in
the various derivations of the DA. One such uncertainty is re-
lated to the definition of the diffusion coefficient D [8–11].
There exist different methods of defining D: by using the

so-called P1 approximation [12], or by asymptotic analysis
[13], or by computing the largest “diffuse” eigenvalue in the
discrete spectrum of the linear operator of the RTE [14]. All
these methods yield somewhat different results, and the dis-
crepancy can be significant if the ratio μa∕μs is not small.
Some comparison of different definitions can be found in
[8,15]. However, in the case of biological tissues in the
near-IR spectral range, μa∕μs ∼ 10−5, and the above problem
is not significant. In this paper, we use the definition
D � l�∕3, where l� is the photon transport mean free path
(defined below); other definitions will not be considered.

Another uncertainty is related to the boundary conditions
for the DE at diffuse-nondiffuse interfaces. The most general
mixed boundary condition admitted by the DE contains the
so-called extrapolation distance parameter l. One naturally
wishes to find the value of l that results in the best fit between
the DE and RTE solutions. Analytical but somewhat ad hoc
expressions for the optimal l have been obtained [12,16–18]
(some of them are discussed below), but it seems equally rea-
sonable to treat l as an adjustable parameter. A more accurate
description of propagation of multiply scattered light near such
interfaces is based on the theory of boundary layers [13].
However, this theory involves functions that are not obtained
from a DE. Recently, a new method for treating the boundary
layers was proposed [19] in which the diffusion coefficient is
allowed to change close to the interface even though the
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medium is physically uniform (on the physical scale at which
the DE or RTE descriptions are valid).

Finally, one needs to determine the correct source term for
the DE. This problem is nontrivial because the source term for
the RTE is a function of the form ε�r; ŝ�, where r is the radius
vector of position and ŝ is a unit vector of direction. In contrast,
the source term for the DE is of the form S�r� and, therefore, it
has fewer degrees of freedom than ε�r; ŝ�. This fundamental
mathematical difficulty is addressed in the diffusion theory
by defining source functions that mimic the ŝ dependence
of ε�r; ŝ� by the shape of S�r� [19–22].

In this paper, we focus on the problem of correct determi-
nation of S�r�. This problem is closely related to decomposition
of the total specific intensity (from now on, simply, intensity)
into the reduced and diffuse components. There are infinitely
many ways in which this can be done and, in each case, a differ-
ent expression for the source term S�r� is obtained. The two
conventional definitions of the reduced intensity are discussed
in Section 2. More generally, it can be shown that the decom-
position in question is governed by an additional adjustable
parameter, which is denoted below by μ [14]. We will refer
to μ as the reduced extinction coefficient. This parameter remains
largely unexplored in the literature. In this paper, we treat μ
(and also the extrapolated boundary distance l) as adjustable
parameters. We then optimize these two parameters using rig-
orous RTE solutions as a benchmark and show that the pre-
cision of the resulting DA near diffuse-nondiffuse interfaces
can be noticeably improved compared to the standard theory.
We emphasize that the main contribution to this improvement
comes from optimizing μ as we obtain the conventional results
for the optimal l. However, the optimal value of μ is not uni-
versal; it depends on the details of the phase function even if the
scattering asymmetry parameter g is fixed. Further, the optimi-
zation performed in this paper is applicable to the normal and
close to normal incidences only. An optimized DA equally
applicable to all angles of incidence likely does not exist.

Our approach can be viewed as an approximate theory of
transition layers because the reduced intensity decays exponen-
tially with depth. The results of this paper can be important for
optical imaging modalities involving diffuse reflection measure-
ments, especially when relatively shallow (up to a few transport
mean free paths) concentration of a fluorescent contrast agent is
the quantity of interest. In this case, the rate of excitation of the
fluorophores is proportional to the local density of electromag-
netic energy u�r� [23], and we will seek the reduced extinction
coefficient μ that yields the most accurate approximation
for u�r�.

The paper is organized as follows. Derivation of the opti-
mized DA is given in Section 2, and its relation to the tradi-
tional theories is discussed in Section 3. Sections 4, 5, and 6
contain numerical examples for one-dimensional propagation
(incident plane wave illumination). In Section 7 three-
dimensional solutions are considered for a incident pencil beam
of small but finite radius. All numerical solutions to the RTE
that are used as benchmarks have been obtained by Monte
Carlo simulations (we assumed no index mismatch at the
diffuse-nondiffuse interface). Finally, Section 8 contains a
discussion of the obtained results.

2. OPTIMIZED DA

The mathematical point of departure for developing the opti-
mized DA is the RTE, which we write here in the stationary
form as

�ŝ · ∇� μt�I�r; ŝ� � μs

Z
A�ŝ; ŝ 0�I�r; ŝ 0�d2s 0 � ε�r; ŝ�: (1)

Here μt � μs � μa is the extinction coefficient, μs and μa are
the scattering and absorption coefficients, A�ŝ; ŝ 0� is the phase
function, and ε�r; ŝ� is the RTE source. The medium is as-
sumed to be isotropic on average, which implies that
A�ŝ; ŝ 0� � f �ŝ · ŝ 0�, and the phase function is normalized by
the conditionZ

A�ŝ; ŝ 0�d2s 0 � 2π

Z
1

−1
f �x�dx � 1: (2)

In this paper, d 2s denotes the element of solid angle about the
direction of the unit vector ŝ, that is, d 2s � sin θdθdφ, where
θ and φ are the polar and azimuthal angles of ŝ in the labora-
tory frame.

Similar to the conventional theory, the optimized DA in-
volves a decomposition of the total intensity into the reduced
and diffuse components, I � I r � I d , where the reduced com-
ponent is ballistic and propagates through the medium without
scattering. The physical idea behind this decomposition is that
the total intensity, especially close to the source, always has a
highly singular component that cannot be described by a DA.
This singular component is included in I r . In contrast, the dif-
fuse component is assumed to be a smooth function of ŝ.

As was noted in [14], the splitting of the total intensity into
the diffuse and reduced parts is rather arbitrary. In general, the
reduced intensity is defined by the equation

�ŝ · ∇� μ�I r�r; ŝ� � ε�r; ŝ�; (3)

where μ is the rate of exponential decay of I r away from the
source (the reduced extinction coefficient). The value of μ is so
far undetermined, and we argue that it cannot be determined
theoretically, at least not without considering the complicated
theory of boundary layers in transport problems, which we wish
to avoid here.

Still, to build a usable approximation, one needs to make
some choice for μ. The most common such choice μ � μt �
μa � μs is due to Ishimaru [24]. To justify this choice, one can
imagine that I r gives the fraction of incident radiation (“pho-
tons”) that are neither absorbed nor scattered up to a given
propagation distance. In this sense, the above definition of μ
is consistent with the common understanding of the term
“extinction.” For the same reason, I r is sometimes referred
to as the coherent component of the intensity, even though this
terminology is not precise.

However, physical intuition fails us in this instance, and the
choice μ � μt (that is, the reduced and the total extinction co-
efficients are the same) is in fact problematic. Indeed, μt does
not characterize the absorption and scattering in the medium
completely; there is also the phase function. If the phase func-
tion is highly forward-peaked, μt ceases to be a meaningful
parameter. Indeed, consider the case of biological tissues in
the near-IR spectral range, for which μa∕μt ∼ 6 · 10−5 but sin-
gle scattering occurs predominantly in a narrow cone whose
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axis is the incident direction. It is clear that many photons will
change their direction upon single scattering only slightly and
will not be noticeably different from the photons that did not
experience scattering at all. In this case, a more reasonable
choice for μ seems to be in between μa and μt , which differ
by several orders of magnitude.

We note that, in Ishimaru’s classical exposition of the subject
[24], there is an additional subtle point that is not typically dis-
cussed. Namely, Ishimaru considers the surface and the volume
sources for the RTE separately and assumes that only the surface
term gives rise to the reduced intensity [25]. Further, the surface
term (which is due to the radiation entering the medium from
outside) is not written explicitly but is accounted for through the
boundary conditions applied to I r . We, however, do not see a
justification for treating the surface and volume sources in the
RTE differently. In the optimized DA, both types of sources pro-
duce the reduced intensity. Correspondingly, we work below
with just one source function ε�r; ŝ� in Eq. (1), which can in-
clude both surface and volume contributions. In this formulation
of the problem, the total intensity satisfies homogeneous half-
range boundary conditions at all diffuse-nondiffuse interfaces.

The second obvious choice for μ is μ � μ�, where μ� � μa �
�1 − g�μs is reciprocal of the transport mean free path l� [26].
Here g � R

s · ŝ 0A�s; ŝ 0�d2s 0 � 2π
R
1
−1 xf �x�dx is the scattering

asymmetry parameter. This choice is free from the paradox men-
tioned above: in the limit g → 1 (highly forward-peaked scatter-
ing), μ approaches μa rather than μt , as one can expect on
physical grounds. In addition, this choice results in the source
function for the DE of a particularly simple form (see below).

What is important for us here is that neither of the two
choices for the reduced extinction coefficient μ described above
has been rigorously justified. We therefore find it more logical
to treat μ as an adjustable parameter (together with the extrapo-
lation distance l, defined precisely below). We therefore are
not making any assumptions about μ at this point and proceed
with the derivation.

As in all conventional diffusion theories, we seek the diffuse
component of the intensity in the form [27]

Id �r; ŝ� ≈
1

4π
�ud �r� � 3ŝ · Jd �r��; (4)

where

ud �r� �
Z

Id �r; ŝ�d2s; Jd �r� �
Z

ŝI d �r; ŝ�d2s (5)

are the diffuse density and current of energy. We then substi-
tute the decomposition I � I r � I d , where Id is given by
Eq. (4) and I r satisfies Eq. (3), into Eq. (1). Since we have used
an ansatz for I d that is not of sufficiently general form, the re-
sulting equation will not generally hold. However, one can re-
quire that the zeroth and first angular moments (integrals with
respect to d 2s and ŝd 2s) of this equation hold. From this re-
quirement, we obtain the following set of differential equations
for ud and Jd :

∇ · Jd � μaud � E ≡ �μ − μa�ur ; (6a)

1

3
∇ud � μ�Jd � Q ≡ �μ − μ��Jr ; (6b)

where

ur�r� �
Z

I r�r; ŝ�d2s; Jr�r� �
Z

ŝI r�r; ŝ�d2s (7)

are the reduced density and current of energy. The latter quan-
tities can usually be found analytically by solving Eq. (3) and
substituting the solution into Eq. (7). Explicit forms of the sca-
lar and vector source functions E and Q are given below for
some special cases. The total density and current are given
by the sums of the reduced and diffuse components, that is,
u � ur � ud and J � Jr � Jd .

We can eliminate Jd from Eq. (7) to obtain a second-order
equation containing ud only:

−∇ · D∇ud � μaud � S; (8)

where D � l�∕3 is the diffusion coefficient and

S � E − l�∇ ·Q (9)

is the source for the DE. The presence of the derivative in
Eq. (9) can lead to some confusion. Indeed, the differentiation
can result in the appearance of a delta function, and this delta
function can be centered exactly at the medium boundary.
In this case, it is not immediately obvious whether this delta
function should be included in the source function or not.
While this question can be addressed, we find it easier to work
with the first-order Eq. (9).

The latter, however, must be complemented by a boundary
condition. The function given in Eq. (4) cannot satisfy the half-
range boundary condition of the RTE. Therefore, this rigorous
condition is customarily replaced by the equation [24]Z

n̂·ŝ≤0
�n̂ · ŝ�Id �r; ŝ�d2s

����
r∈∂Ω

� 0; (10)

where n̂ is the outward unit normal to the boundary ∂Ω of the
region Ω occupied by the medium. Substituting the decompo-
sition Eq. (4) into Eq. (10), we obtain

�ud − 2n̂ · Jd �jr∈∂Ω � 0: (11)

This is a special case of the more general boundary condition,�
ud − 3

l
l� n̂ · Jd

�����
r∈∂Ω

� 0; (12)

where l is an adjustable parameter and the factor 3∕l� has
been introduced for convenience. The boundary condition
given in Eq. (11) is recovered if we take l � 2l�∕3,
which is one of the conventional values for l if there is no
refractive index mismatch and there are no Fresnel reflections
at the boundary (another commonly encountered choice
is l � 0.71l�).

Equations (8) and (12) form the mathematical basis of the
optimized DA.

3. DA WITHOUT THE VECTOR SOURCE

While Eqs. (17) and (12) have been derived above in a straightfor-
wardmanner, they might not look very familiar due to the presence
of the vector source term Q . Note that the boundary condition
equivalent to Eq. (12) but involving ud only is of the form

�ud � ln̂ · ∇ud − 3ln̂ ·Q �jr∈∂Ω � 0; (13)

which is inhomogeneous and different from the frequently
encountered homogeneous boundary condition
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�ud � ln̂ · ∇ud �jr∈∂Ω � 0: (14)

While it is known that the correct boundary condition in a DA
contain a free term [8,13], the homogeneous condition (14) is
used far more frequently in the optical tomography literature. In
fact, the questions of choosing the right boundary condition and
the source term for the DA are closely related and should not be
considered separately.

One of the goals of this paper is to provide a clear and math-
ematically consistent derivation of the source term and the cor-
responding boundary condition. To this end, it appears
instructive to consider an alternative formulation that does
not contain the vector source Q . Of course, Q � 0 if μ � μ�.
But we will consider now a more general approach to removing
Q from consideration, which does not use the assumption
μ � μ�.

The basic idea behind this approach can be loosely summa-
rized as follows. First, we can shift the support of the source
functions E�r� and Q �r� into the medium by an infinitesimal
distance so that it no longer touches the boundary, and this
operation should not influence the solution to the DE substan-
tially, certainly, not sufficiently deep inside the medium. Then
Q �r� � 0 if r ∈ ∂Ω [28]. Therefore, the shift results in Eq. (8)
with S given by (9) and the homogeneous boundary condition
(14). However, the source term S in Eq. (8) still depends onQ .

The next step is to note that the function S�r� might be
quite complicated and not known precisely but, apparently,
all that matters are the moments M 0 �

R
S�r�d3r and

M1 �
R �r − rs�S�r�d3r, where rs ∈ ∂Ω is the point at which

an infinitely narrow incident beam enters the medium
(the source location). For the one-dimensional propagation
problem, which is considered in Sections 4 through 6 of this
paper, the moments are defined as M 0 �

R
S�z�dz and M1 �

ẑ
R
zS�z�dz, where z is the depth direction and the radiation

enters the medium through the plane z � 0. For a more
general three-dimensional case, we can write [29]

u�r� �
Z

G�r; r 0�S�r 0�d3r 0

≈ G�r; rs�M 0 �
∂G�r; r 0�

∂r 0

����
r 0�rs

·M1; (15)

where G�r; r 0� is the Green’s function for Eq. (8), that is, the
solution to Eq. (8) for S�r� � δ�r − r 0� subject to the homo-
geneous boundary condition (14) with respect to both argu-
ments. It then follows from Eq. (14) that

n̂ ·
∂G�r; r 0�

∂r 0

����
r 0�rs

� −
1

l
G�r; rs�: (16)

In addition, for a normally incident beam,

M1 � −n̂
μ∕μ� − μa∕μ

μ − μa
M 0: (17)

This relation can be verified by a direct computation by keep-
ing in mind that the expression ∇ ·Q contains a delta function
due to the displacement of the support of Q into the medium,
which results in differentiation of a discontinuous function.
We can now rewrite Eq. (15) as

u�r� ≈
�
1� 1

l
μ∕μ� − μa∕μ

μ − μa

�
G�r; rs�M 0: (18)

In other words, the density deep inside the medium is given, up
to a constant overall factor, by the Green’s function G�r; rs�,
which is independent of the form of the source. Note that,
in the case μ � μ�, the factor in the brackets on the right-hand
side of Eq. (18) becomes equal to 1� l�∕l, in agreement
with [29].

So far, we have not really departed from the mathematical
formalism of the optimized DA. All we did was to move the
support of the functions E�r� and Q �r� away from the boun-
dary by an infinitesimal distance, so that the boundary condi-
tion now does not contain Q and is of the homogeneous form
given by Eq. (14). In particular, Eq. (18) is a valid asymptote in
the optimized DA. However, the form of this asymptote sug-
gests that the only trace of μ is in the overall coefficient. This
further suggests that we can simplify the formalism by forget-
ting about the vector source Q and assuming (without any fur-
ther justification) that it is zero.

If we follow the above prescription, we will have to solve
Eq. (8) in which S � E with the homogeneous boundary
condition, Eq. (14). We will refer to this approach and the cor-
responding solutions as conventional. Of course, the conven-
tional and the optimized approaches coincide exactly if μ � μ�,
but, otherwise, they can differ strongly near the boundaries. In
the conventional approach, the relation betweenM 0 andM1 is
of the form

μ�M1 � −n̂M 0; (19)

which corresponds to the asymptotic solution

u�r� ≈ �
1� l�∕l

�
G�r; rs�M 0: (20)

This is of the same functional form as Eq. (18), up to an overall
constant. However, we emphasize again that the solutions in
the optimized and the conventional DAs are substantially dif-
ferent near the boundaries, and this difference is not reduced to
multiplication by a constant.

As mentioned above, we will optimize solutions to Eq. (6)
by treating μ and l as adjustable parameters. For comparison
purposes, we will also optimize (with respect to the same
parameters) the conventional solutions described above. We re-
iterate that the conventional solutions are obtained by solving
Eq. (8) with S � E (that is, we set Q � 0) subject to the
homogeneous boundary condition, Eq. (14).

Finally, note that all the arguments of this section can be
repeated for one-dimensional propagation in which all quan-
tities of interest depend only on the depth z.

4. NUMERICAL EXAMPLES FOR
ONE-DIMENSIONAL PROPAGATION AND
NORMAL INCIDENCE

Let the scattering medium occupy the half-space z > 0 and
consider a plane wave, normally incident family of rays.
This excitation is described by the RTE source term ε�r; ŝ� �
W δ�z�δ2�ŝ; ẑ�, where δ2 is the angular delta function andW is
the incident energy per unit time per unit area. Then the re-
duced intensity is of the form I r�r; ŝ� � W exp�−μz�δ2�ŝ; ẑ�.
From this we can compute the reduced density and current of
energy according to Eq. (7) and the source terms according to
Eq. (6) (second equalities). The result is
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E�z� � W �μ − μa� exp�−μz�; (21a)

Q �z� � W �μ − μ�� exp�−μz�ẑ: (21b)

It can be seen that Eq. (6) takes in this case the form

∂Jd �z�
∂z

� μaud �z� � W �μ − μa� exp�−μz�; (22a)

1

3

∂ud �z�
∂z

� μ�Jd �z� � W �μ − μ�� exp�−μz�: (22b)

Here Jd is the Cartesian component of the diffuse current in
the Z direction; the other two Cartesian components of the
diffuse and total currents are zero by symmetry. The boundary
condition (12) takes the form

ud �0� � 3
l
l� Jd �0� � 0: (23)

The solution to Eqs. (22) and (23) is

1

W
ud �z� � �A − 1�e−μz � Be−kd z ; (24a)

1

W
Jd �z� �

�
μa
μ
A − 1

�
e−μz � μa

kd
Be−kd z ; (24b)

where

A � −
2μ2

μ2 − k2d
; kd �

ffiffiffiffiffiffiffiffiffiffiffiffi
3μaμ

�p
; (25a)

B � 3μ2 − k2d
μ2 − k2d

� 3l
1� kdl

�
μ� −

μkd � k2d∕3
μ� kd

	
: (25b)

Here kd is the diffuse wavenumber. To obtain the total density
and current, we must add the reduced components to ud and
Jd . In the case considered, ur � Jr � W exp�−μz� so that

1

W
u�z� � Ae−μz � Be−kd z ; (26a)

1

W
J�z� � μa

μ
Ae−μz � μa

kd
Be−kd z : (26b)

This solution can be compared to the density and current ob-
tained by solving the RTE without any approximations.
Although one-dimensional RTE can be solved by a variety
of analytical methods, we have used in this paper Monte
Carlo simulations to obtain such solutions. The corresponding
computational package has been developed by us and is pub-
licly available [30]. Further, we have used the nonlinear opti-
mization algorithm implemented in Gnuplot to fit the
analytical solution given in Eq. (26a) (for the density) to the
Monte Carlo numerical solution. The variables μ and l have
been used as the adjustable parameters in the fitting procedure.
Results are shown in the figures below.

Simulations illustrated in Fig. 1 were performed for a
medium with the ratio μa∕μs � 0.03∕500 and the Henyey–
Greenstein phase function with the scattering asymmetry
parameter g � 0.98. These parameters are characteristic of bio-
logical soft tissues in the near-IR spectral range. We plot the
total density in panel (a), the total current in panel (b), and
the diffuse component of the current in panel (c) for various
values of the adjustable parameters. Different curves and data
points shown in the figure are explained next.

The dots labeled MC in Fig. 1 are the result of Monte Carlo
simulations. Note that, in order not to overcrowd the figure, we
show only a few Monte Carlo data points in the plot. The total
number of computed data points is 400; they are equally spaced
between z � 0 and z � 10l�, and the Monte Carlo process
was run to achieve high statistical confidence of each data point.
All 400 data points were used in the optimization procedure.
Note also that the Monte Carlo simulation was carried out in a
much wider slab (either 50l� or 100l� wide), so that the effect
of the far face of the slab is negligible in the interval
0 < z < 10l�, which is displayed in the figure. Finally, the
leftmost data point was computed by accumulating the statis-
tics of photons crossing the surface, while all other data points
were computed by accumulating the statistics of photons

Fig. 1. (a) Total density u; (b) total current J ; and (c) the diffuse
component of the current Jd as functions of the normalized depth
z∕l� for one-dimensional propagation in the half space z > 0.
Parameters of the medium are μa∕μs � 0.03∕500 and g � 0.98.
The curves μ � μt and μ � μ� were computed according to
Eq. (26) with μ as labeled and l � 2l�∕3. The curves labeled
“OPT” were computed according to the same formulas but for the
optimal values of μ and l, which are in this case μopt � 2.84μ�,
lopt � 0.69l�.
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visiting a given volume voxel (a thin infinite layer for the
one-dimensional problem considered here). Both approaches
are correct, but the specific intensity changes very fast in a thin
boundary layer, and it is difficult to achieve accurate results
by accumulating volume statistics in this region.

The curves labeled μ � μt and μ � μ� in Fig. 1 have been
computed according to Eq. (26) for the above values of μ and
l � 2l�∕3. It can be seen that both curves coincide with the
Monte Carlo data at sufficiently large depths but deviate sig-
nificantly near the surface, the loss of precision being more
significant for the μ � μ� curve. The maximum relative error
is about 30% in both cases, but the significant errors extend
up to z ∼ 1l� for μ � μt and up to z ∼ 3l� for μ � μ�.

Finally, the curve labeled OPT was computed using the op-
timal values of μ and l, μopt � 2.84μ� and lopt � 0.69l�.
This curve shows an excellent agreement with the Monte
Carlo data almost everywhere. The only exceptions are the
points very close to the surface (separated from the surface
by a small fraction of l� ), where any DA necessarily breaks.
The cause of this breakdown is related not so much to the pres-
ence of a continuous spectrum in the RTE solutions (which
cannot be captured in any diffusion theory) but rather the
half-range boundary conditions of the RTE. We will illustrate
the cause for this discrepancy when we consider the angular
dependence of the specific intensity.

It is also interesting to note that the inaccuracy of the DA
with suboptimal parameters affects mostly the density u, but
not the current. The total current is almost independent of
the choice of parameters and is always positive (directed into
the medium), as could be expected from energy conservation.
The diffuse component of the current, however, depends
strongly on the parameters and is negative close to the surface.
This can be easily understood: the negative current describes
the diffuse reflectance of the medium.

In Fig. 2, we show the results for a similar medium but with
g � 0.8. In this case, the μ � μt curve is not dramatically
inaccurate, but the optimized curve is still much better. The
optimal parameters for this medium are μopt � 2.58μ�,
lopt � 0.69l�. Generally, we have found that the ratio
μopt∕μ� tends to increase with g . For example, we have ob-
tained the following values for this ratio: 1.43 for g � 0,
1.96 for g � 0.25, and 2.26 for g � 0.5. Corresponding plots
are not shown, but in all cases excellent agreement has been
obtained between the optimized curves and the Monte
Carlo data points. The result μopt∕μ� � 1.43 (rather than
unity) for g � 0 should not be surprising. Recall that the
RTE has a continuous and discrete spectrum of eigenvalues
λn and that in the case of isotropic scattering there are only
two discrete eigenvalues λd � 	1∕kd , while the continuous
spectrum is contained in the interval −μt ≤ λ ≤ μt . Also,
μt � μ� � 1∕l� for isotropic scattering. The rate of exponen-
tial decay is the reciprocal of the eigenvalue λ, and the result
λopt � 1.43l� � 1.43∕μt can be viewed as some weighted
average of all exponents contained in the interval �0; 1∕μt �.

As for the ratio lopt∕l�, it remained relatively stable with a
tendency to increase slightly with g , i.e., from 0.67 for g � 0 to
0.69 for g � 0.98. This behavior is somewhat counterintuitive.
Indeed, the ratio lopt∕l� ≈ 0.71 can be obtained from the

exact analytical solution to the RTE for reflection from a
half-space with isotropic scattering and μa∕μs → 0 [31], which,
in the case of the Henyey–Greenstein phase function, corre-
sponds to g � 0 (the Milne problem). We, however, obtain
a similar ratio of 0.69 for a highly anisotropic forward-peaked
scattering. Moreover, when we decrease g , the optimal ratio
lopt∕l� does not tend to 0.71 but decreases and approaches
2∕3. In fact, the extrapolation distance of the exact solution
to the Milne problem is not necessarily the optimal extrapola-
tion distance for the DA; the two solutions are substantially
different. It is also worth noting that adjusting the value of
l has only a minor effect on the fit quality, which is mainly
influenced by the choice of μ.

In Fig. 3 we show results for a medium similar to that of
Fig. 1 (with g � 0.98) but with twice larger absorption.
The results are qualitatively the same as in Fig. 1, with
μopt � 2.82μ�, lopt � 0.69l�. It appears that the choice of
optimal parameters does not depend on absorption significantly
as long as μa∕μs is small. The difference of the optimal ratio
μopt∕μ� with Fig. 1 (2.82 versus 2.84) can be due to numerical
errors. We note in this respect that, in order to achieve stably
reproducible results, optimization must be performed in suffi-
ciently large intervals of z. In our simulations, the optimized
parameters were stable within 1% to 2% relative error and
could depend within these limits on the particular realization
of the Monte Carlo process and sampling of the data points.

It is now evident that the most challenging case for building
any diffusion theory is the one with the largest ratio, μt∕μ�. For
the medium considered in Fig. 1, this ratio is ≈50. The opti-
mized DA can still be very accurate in this case, but the correct

Fig. 2. Same as in Figs. 1(a) and 1(b), but for g � 0.8; the diffuse
component of the current is not shown. The optimal parameters in
this case are μopt � 2.58μ�, lopt � 0.69l�.
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choice of the reduced extinction coefficient μ is important. We
therefore use the medium of Fig. 1 to illustrate the quality of
the conventional DA described in Section 3. Recall that the
latter is obtained by solving Eq. (8), in which we set S � E
(or Q � 0) subject to the homogeneous boundary condition,
Eq. (14). For the one-dimensional problem considered here,
this is mathematically equivalent to replacing the right-hand
side of Eq. (22b) by zero; everything else remains unchanged.
The resulting solution is still of the form of Eq. (26), but the
constants A and B are now different, viz.,

A � μ2 − 3μ�μ
μ2 − k2d

; B � 3μ�μ − k2d
μ2 − k2d

1� lμ
1� lkd

: (27)

The solutions obtained according to the conventional DA are
illustrated in Fig. 4. The curves labeled μ � μ� in Figs. 4 and 1
are identical. The curve labeled μ � μt , however, does not pro-
vide a reasonable approximation in the conventional DA
(Fig. 4). The large-depth asymptote is in this case off by an
overall factor but, of course, it has the same rate of exponential
decay described by the function exp�−kd z�. Near the boundary,
the conventional DA cannot be made accurate, even by
using optimization. The optimal parameters are in this case
μopt � 1.31μ�, lopt � 0.99l�, and these parameters do not
provide an accurate fit. The above optimal value of l is quite
far from the commonly accepted values (from 2∕3 to 0.71),
which is an indication that the formula itself is wrong. The
mismatch at the boundary persists in the case of a finite slab
as well (data not shown), which is not the case for the optimized
DA whose accuracy in finite slabs is illustrated next.

The optimized DA solutions in finite slabs are of a more
general form than Eq. (24) or Eq. (26). Namely, we have in
this case for the total current and density

1

W
u�z� � Ae−μz � B1e−kd z � B2ekd z ; (28a)

1

W
J�z� � μa

μ
Ae−μz � μa

kd
�B1e−kd z − B2e−kd z�: (28b)

Here the coefficient A is the same as in Eq. (25a), but B1 and
B2 are rather complicated. The corresponding expressions can
be simplified by neglecting the terms that are exponentially
small and of the order of exp�−μL�. These, typically, very small
terms originate from the overlap of the reduced intensity
with the far surface of the slab, which gives rise to inhomo-
geneous boundary conditions at that surface. Then B1 and
B2 take the form

B1 �
�1� kdl�2

�1� kdl�2 − �1 − kdl�2 exp�−2kdL�
B; (29a)

B2�
�1−kdl��k2d �1−2lμ�3lμ��−3μ2�1�lμ���
�μ2−k2d ���1�kdl�2 exp�2kdL�−�1−kdl�2�

; (29b)

where B is the constant defined in Eq. (25b).
In Fig. 5, we plot the total density according to the

optimized DA in finite slabs of different widths L
(L � 10; 20; 40l�) for a medium of the same optical properties
as in Fig. 1. As before, the Monte Carlo statistics were accu-
mulated in 400 thin layers and only approximately 1∕20 of all
data points are shown in the figure. In addition, the leftmost

Fig. 3. Same as in Figs. 1(a) and 1(b), but for twice stronger ab-
sorption, μa∕μs � 0.06∕500; the diffuse component of the current is
not shown. The optimal parameters in this case are μopt � 2.82μ�,
lopt � 0.69l�.

Fig. 4. Same as in Figs. 1(a) and 1(b) and for the same medium
parameters, but analytical curves were computed according to the con-
ventional DA. The optimal parameters in this case are μopt � 1.31μ�,
lopt � 0.99l�. The curves μ � μ� in this figure and in Fig. 1 are
identical.
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and the rightmost data points were computed by counting the
photons that cross the corresponding surface. It can be seen that
the agreement is in all cases excellent. The slight discrepancy
seen very close to either boundary in the case L � 10l� is
of the same magnitude and extent as is seen in Fig. 1 near
the boundary z � 0 (about 10% relative error; errors of the
same order of magnitude can be seen in the back-reflected
quantities discussed in Section 7 below for a pencil beam
illumination). It should be emphasized that the optimized
parameters used to compute the analytical curves in Fig. 5 were
computed by considering the half-space data.

We next turn to the angular dependence of the intensity.
Due to the azimuthal symmetry of the problem, it depends
only on the polar angle θ. In Fig. 6, we plot I as a function
of cos θ at different values of z near the interface z � 0 through
which the incident radiation enters the medium. The theoreti-
cal curves were computed according to Eq. (4), to which a term
of the form exp�−μoptz�δλ�cos θ� has been added, where

δλ�x� �
λ

π2
1

�x − 1�2 � λ2
(30)

is a forward-peaked angular delta function. The normalization
factor in Eq. (30) is chosen so that 2π

R
1
−1 δλ�x�dx ≈ 1. In

Fig. 5. Total density in finite slabs of varying width [L � 10l� (a),
L � 20l� (b), and L � 40l� (c)] for the same medium as in Fig. 1.
Monte Carlo simulations versus optimized DA. The curves labeled
OPT have the same parameters μopt and lopt, as in Fig. 1. The total
width of the slab corresponds to the interval of z shown in each plot.

Fig. 6. Angular dependence of the intensity I�z; θ� at various depths
z [z � 0.025l� (a), z � 0.425l� (b), z � 0.975l� (c), and z �
1.425l� (d)] for the same medium parameters as in Fig. 1. Monte
Carlo simulations (MC) compared to the DA. Panel (a) also shows the
angular dependence of the intensity back-reflected at the plane
z � 0 (BR). Not all MC data points are shown, and some of them
lie outside of the areas of the plots. The thin blue lines that connect
the MC data points are drawn to guide the eye.
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Fig. 6, we have taken (quite arbitrarily) λ � 0.005. The addi-
tional term defined above represents the reduced intensity. It is
shown as a finite-width Lorentzian because a true delta function
cannot be displayed in a plot. Even though this may be not
obvious from the plots, the integral weight of this additional
term is approximately equal to the integral weight of the for-
ward peak that is seen in all Monte Carlo simulation results.

The curve labeled BR in Fig. 6(a) is the angular distribution
of the back-reflected intensity. It was computed by a Monte
Carlo simulation counting the outgoing photons that cross
the z � 0 boundary from inside the medium. The same func-
tion can also be defined analytically as a solution to a nonlinear
integral equation and is known as the Chandrasekhar function
[32]. For our purposes, the numerical Monte Carlo result suf-
fices. It can be seen that the reflected intensity satisfies the half-
range boundary condition of the RTE and is therefore zero for
cos θ > 0 (for all ingoing directions). For this reason, the shape
of the curve is highly nonlinear, and it is clear that this depend-
ence cannot be captured with any precision by a DA.

However, as soon as we evaluate I�θ� inside the medium,
the shape of the curve starts to change. At z � 0.025l�

[Fig. 6(a)], the intensity becomes nonzero for ingoing direc-
tions, and it has a pronounced forward peak. The DA still
cannot capture this dependence accurately, but some qualita-
tive correspondence is obvious. At larger optical depths
[Figs. 6(b)–6(d)], the exact function becomes increasingly lin-
ear and the forward peak less pronounced. At z � 1.425l�, the
DA is already quite accurate. Of course, the DA cannot predict
accurately the width or exact shape of the forward peak, which
is still present at this depth. It simply replaces it by a delta func-
tion of approximately the same integral weight.

It can be concluded that any DA has three adjustable param-
eters: two parameters describing the linear segment of the an-
gular dependence of the intensity and one parameter describing
the evolution (exponential decay) of the forward peak. This last
parameter is the reduced extinction coefficient μ, and it has not
been considered in the traditional theory. In this paper, we have
used a numerical optimization technique to find the optimal
value of this parameter.

Another conclusion is that any DA cannot be equally accurate
for arbitrary angles of incidence. This follows from the fact that
the angular distribution of the reflected intensity is not captured
correctly by the DA and then using reciprocity relations for the
Green’s function of the RTE. The optimization performed in this
paper applies to normal incidence only, and it can be expected to
remain accurate for incidence angles such that the curve labeled
BR in Fig. 6(a) does not deviate too much from a linear behavior.
In Section 5, we will show that this is indeed the case.

5. NUMERICAL EXAMPLES FOR
ONE-DIMENSIONAL PROPAGATION AND
OBLIQUE INCIDENCE

As was demonstrated above, the angular distribution of the
back-reflected light is not well described by the DA.
Invoking the reciprocity relation for the RTE Green’s function,
we can conclude that the optimization of μ and l that was per-
formed above is not applicable to all incidence angles. Rather, it
applies to normal incidence only. There is no reason to believe

that the same optimized parameters would yield accurate
approximation for oblique incidence.

Consider incident intensity that, in the half-space z < 0, is of
the form I inc � W δ2�ŝ; ŝ0�, where ŝ0 is some direction, gener-
ally, different from the direction of the Z axis and makes an angle
θ with the latter. It can be shown that the surface source term for
the RTE is in this case ε�r; ŝ� � W cos θδ�z�δ2�ŝ; ŝ0�. We can
find the reduced intensity from Eq. (3). A straightforward cal-
culation results in I r�z; ŝ� � W δ2�ŝ; ŝ0� exp�−μz∕ cos θ�, and
the corresponding reduced density and current are ur�z� �
W exp�−μz∕ cos θ� and Jr�z� � W ŝ0 exp�−μz∕ cos θ�. For
the diffuse components, we then have two coupled equations:

ẑ ·
∂Jd
∂z

� μaud � W �μ − μa� exp�−μz∕ cos θ�; (31a)

ẑ
3

∂ud
∂z

� μ�Jd � W ŝ0�μ − μ�� exp�−μz∕ cos θ�: (31b)

An important difference with the normal incidence case is that
now Jd and Jr have more than one nonzero Cartesian compo-
nent. Generally, we can assume that the vector ŝ0 lies in the XZ
plane and the same is true for Jr and Jd . The boundary condition
at the z � 0 interface is

ud �0� � 3
l
l� Jdz�0� � 0: (32)

The solutions in the half-space z > 0 for the total density and
the normal component of the total current are

1

W
u�z� � Ae−μz∕ cos θ � Be−kd z ; (33a)

1

W
Jz�z� �

μa
μ
Ae−μz∕ cos θ � μa

kd
Be−kd z ; (33b)

where

A � −
�3 − 1∕cos2 θ�μ2
�μ∕ cos θ�2 − k2d

; (34a)

B � 3μ2 − k2d
�μ∕ cos θ�2 − k2d

−
kdl

1� kdl
3μ cos θ� kd
μ∕ cos θ� kd

� 3μ�l cos θ

1� kdl
: (34b)

In the case θ � 0 (normal incidence), these expressions coincide
with those given in Eq. (3).

In Fig. 7, we plot Monte Carlo and theoretical [that is, given
by Eq. (33)] results for the total density u�z� and same medium
parameters as in Fig. 1. As above, theoretical curves are plotted
for various values of parameters where the optimal parameters
were computed for the normal incidence. It can be seen that the
optimized DA works reasonably well for moderate incidence
angles, up to tan θ ∼ 0.5, but breaks down for larger values
of θ. For tan θ � 2, the DA results are not accurate, even
in the asymptotic regime. We note that the exact function
u�z� always has a maximum, albeit it can be very close to the
surface for large incidence angles. The theoretical curves also have
maxima for sufficiently small values of tan θ, but for tan θ larger
than some critical value, the theoretical functions are monoton-
ically decreasing. Overall, it can be concluded that, for tan θ ≳ 1,
the standard and the optimized DAs are all inaccurate.
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Another interesting feature of oblique incidence, which is
not captured quantitatively by any DA, is the lateral current.
As mentioned above, the current J has two nonzero Cartesian
components, which lie in the plane XZ spanned by the vector
ŝ0 and the Z axis. In Eq. (33b), only the normal z component
of the current was given. The lateral component Jx (the total
current) can also be found from Eq. (31) and is given by

1

W
Jx � μ∕μ� sin θ exp�−μz∕ cos θ�: (35)

Interestingly, this current physically exists in the system even
though ∂ud∕∂x � 0 and, thus, this current is not subject to
Fick’s law. The lateral current, however, decays exponentially
with the depth z. The lateral current is plotted in Fig. 8.
It can be seen that the theoretical formula Eq. (35) describes
this current qualitatively but not quantitatively. Indeed, the lat-
eral current is not a diffusion phenomenon and can be properly
accounted for only by the transport theory.

6. EFFECTS OF THE PHASE FUNCTION

So far, we have considered only the Henyey–Greenstein phase
function; that is, we assumed that

A�ŝ; ŝ 0� � 1

4π

1 − g2

�1 – 2g ŝ · ŝ 0 � g2�3∕2 ; (36)

where g is scattering asymmetry parameter. Although g defines
the Henyey–Greenstein functions completely, a more general
phase function is not defined by g. In other words, there are
many different phase functions with the same value of g. For
example, we can consider an exponential function of the form

A�ŝ; ŝ 0� � β

4π

exp�βŝ · ŝ 0�
sinh�β� : (37)

Here the scattering asymmetry parameter is related to β by
g � coth�β� − 1∕β. This equation can be uniquely inverted,
and for every 0 < g < 1, we can find the corresponding param-
eter β. It should be noted that the Henyey–Greenstein and ex-
ponential phase functions with the same g are quite different. In
particular, the probability of backscattering is much smaller in
the latter than in the former case.

Fig. 7. Same as in Fig. 1, but for off-normal incidence [tan θ � 0.5
(a), tan θ � 1.0 (b), and tan θ � 2.0 (c)]. Here θ is the angle between
the collimation direction of incident radiation and normal to the sur-
face; θ � 0 for normal incidence. However, the front of the incident
radiation is still infinitely broad, and the problem is one-dimensional.

Fig. 8. Lateral current Jx for off-normal incidence. Same medium
and simulation parameters and plot labeling as in Fig. 7.
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In Fig. 9, we plot the total density as a function of depth z for
one-dimensional propagation in a finite slab of the width
L � 10l�. The theoretical solutions are given in this case by
Eq. (28). We have used two different phase functions (Henyey–
Greenstein and exponential) with the same value of g in Monte
Carlo simulations. It can be seen that the numerical solutions
for these two phase functions differ significantly for z ≲ 2l�.
However, in the asymptotic region, and near the far face of
the slab, the solutions essentially coincide. This is an expected
result: the higher angular moments of the phase function are
important only sufficiently close to the source.

However, the goal of this paper is to find a DA that is as
accurate as possible everywhere, including close to the source.
It can be seen that no such universal approximation exists.
The optimal parameters depend on the higher moments of
the phase function. For the exponential phase function, the op-
timal values are μopt � 4.38μ� and lopt � 0.71l�, which dif-
fer from the respective values for the Henyey–Greenstein
function (μopt � 2.84μ� and lopt � 0.69l�). The parameter
that is changed most is μopt, but lopt is also noticeably different.

It is interesting to note that lopt for the exponential phase
function matches closely the theoretical result deduced from
the solution of the Milne problem for isotropic scattering.
Also, the quality of the fit is better for the Henyey–Greenstein
phase function. This is probably due to the fact that the expo-
nential phase function suppresses strong backscattering and, as a
result, the diffuse regime is reached after more scattering events.

7. NUMERICAL EXAMPLES IN THREE
DIMENSIONS

Consideration of a narrow collimated incident beam is some-
what complicated by the following fact. If we take the incident
beam to be described mathematically by a delta function in the
transverse directions, i.e., δ�ρ�, where ρ � �x; y�, then the
solutions to both the RTE and the DE will contain singularities
that are difficult to represent or compare graphically. We
therefore will consider an incident beam of small but finite
width. Let the RTE source function be of the form

ε�ρ; z� � w�ρ�δ�z�δ2�s; ẑ�;
Z

w�ρ�d2ρ � W : (38)

Here W is the total power of the incident beam (incoming en-
ergy per unit time, but not per unit surface, as was the case in
the one-dimensional geometry). We assume that the beam is
perfectly collimated and all incident rays are parallel to the
Z axis. This is expressed mathematically by the angular delta
function δ2�s; ẑ� in Eq. (38). The reduced intensity is given in
this case by

I r�ρ; z� � w�ρ�e−μzδ2�s; ẑ�: (39)

Correspondingly, the source functions in Eq. (6) are

E�ρ; z� � w�ρ�e−μz ; Q �ρ; z� � ẑE�ρ; z�: (40)

We can now solve Eq. (6) by Fourier transform. To this end,
we use the integral expansion

ud �ρ; z� �
Z

ũd �q; z�eiq·ρ
d2q
�2π�2 (41)

and similarly for all other ρ-dependent functions. Upon sub-
stitution into Eq. (6), we find the following pair of equations
for the Fourier transforms of the diffuse density ũd �q; z� and
the z component of the diffuse current J̃ d z�q; z�:
∂J̃ d z�q;z�

∂z
�
�

q2

3μ�
�μa

�
ũd �q;z���μ−μa�e−μz w̃�q�; (42a)

1

3

∂ũd �q; z�
∂z

� μ�J̃ d z�q; z� � �μ − μ��e−μz w̃�q�: (42b)

Once these equations are solved, the radial component of the
diffuse current, Jd⊥, can be found from the equation

J̃d⊥�q; z� � −
iq
3μ�

ũd �q; z�: (43)

The solution to Eq. (42) with the boundary condition
[Eq. (12)] (which can also be Fourier transformed) is similar
in form to Eq. (24) with a few modifications, namely,

ũd �q; z� �

�A�q� − 1�e−μz � B�q�e−κ�q�z�w̃�q�; (44a)

J̃ d z�q; z� �

�C�q� − 1�e−μz � κ�q�

3μ�
B�q�e−κ�q�z�w̃�q�; (44b)

where

A�q� � −
2μ2 � q2

μ2 − κ2�q� ; C�q� � −
2μaμ��μ∕μ��q2

μ2 − κ2�q� ; (45a)

B�q� � 3μ2 − κ2�q�
μ2 − k2d

� 3l
1� κ�q�l

�
μ� −

μκ�q� � k2d∕3
μ� κ�q�

	
;

(45b)

κ�q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2d � q2

q
: (45c)

It can be seen that the expressions (44) and (45) are reduced to
(24) and (25) in the case q � 0. As before, we need to add the
diffuse and the reduced components of the density and current
to obtain the total quantities. It follows from Eq. (39) that
ũr�q; z� � e−μz F̃�q�, J̃r�q; z� � ẑur�q; z�, so that the addition
results in cancellation of the unities in the square brackets in
Eq. (44). This is similar to the transition from Eq. (24) to

Fig. 9. Density as a function of depth z for the same medium
parameters as in Fig. 1 but two different phase functions labeled as
HG (Henyey–Greenstein) and EXP (exponential). MC and OPT label
Monte Carlo simulations and optimized theoretical curves computed
according to Eq. (28). Simulations were performed in a finite slab of
width L � 10l�. Optimal parameters are different for the HG and
OPT curves. For HG, the parameters are the same as in Fig. 1.
For EXP, μopt � 4.38μ�, lopt � 0.71l�.
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Eq. (26); here we do not explicitly write out expressions for the
total quantities.

We now specialize to the case of a symmetric pencil beam of
radius a described by the function w̃�q� � 2 W

aq J1�aq�, where
J1�x� is the cylindrical Bessel function of the first kind (not to
be confused with the current density). We can use the Fourier-
space solution (44) and the transformation rule (41) to com-
pute the solutions in real space. The Fourier integral cannot be
computed analytically but is easy to evaluate numerically. We
note that the integral is converging and contains no singular-
ities. In particular, the integrand does not have a singularity at
q2 � μ2 − k2d , even though the coefficients A�q�, B�q�, and
C�q� are singular at this point.

The radial dependence of the density u�ρ; z� at different
depths z inside the medium is shown in Fig. 10. Parameters
of the medium are the same as in Fig. 1 except that the incident
field is now a pencil beam of the radius 0.5μ�. Although opti-
mization of the reduced extinction coefficient μ was carried out
for an infinite-front, plane-incident wave, we see that the opti-
mized DA still outperforms the conventional DAs. In fact, it
can be seen that the optimized DA is noticeably more accurate
up to the depth of z ∼ 8l�. We note that all DA predict a jump
of the density at the edge of the incident pencil beam, that is, at
ρ � a while the exact solution is continuous everywhere. We
note that the conventional DAs with μ � μ� and μ � μt can
be accurate for some values of the parameters, but the
optimized DA is more universally applicable.

We next consider the density and current exactly at the in-
terface, that is, at z � 0. As was already shown in Section 4 for
wide-front plane-wave illumination, any DA is not capable of
capturing correctly the angular dependence of the backscattered
intensity, I�ŝ�. There is no reason why this conclusion would
not be applicable to the three-dimensional geometry of a nar-
row incident beam, which is considered in this section. In fact,
comparison of the quantities computed exactly at the interface
by Monte Carlo simulations and from a DA is not very mean-
ingful. Indeed, the DA always accounts for hypothetical pho-
tons that propagate in the incoming directions, while we know
from the RTE half-range boundary conditions that the specific
intensity is strictly zero in such directions (at the interface).
Therefore, the predictions of a DA for, say, the normal
component of current at the interface do not correspond to
measurable quantities.

Nevertheless, we plot in Fig. 11 the density u and the nor-
mal component of the current, Jz at the interface. Again, the
predictions of various DAs are compared to the rigorous Monte
Carlo results. In this figure, the range of the radial variable ρ is
a < ρ < 10l�, where a � 0.5l� is the radius of the incident
pencil beam. Therefore, the region close to the axis of the beam
(ρ < a) is excluded from consideration. While the Monte Carlo
results in this region are meaningful, the DA predictions can
change sign and are, generally, meaningless. Besides, we note
that it is technically difficult to measure the backscattered in-
tensity emitted exactly from the point where the incident beam
enters the medium. This signal can be dominated by specular
reflection, for example. However, as soon as we cross the point
ρ � a, the agreement between the DAs and the Monte Carlo
results becomes quite decent. It is interesting to note that, for

the quantities displayed in Fig. 11, the DA with μ � μ� pro-
vides the best approximation. The fact that μ � μopt does not
provide the best approximation in this case is not surprising.

Fig. 10. Radial dependence of u at different depths z [z � 1l� (a),
z � 2l� (b), z � 4l� (c), and z � 8l� (d)]. Incident cylindrical pen-
cil beam has the radius of 0.5l� (diameter of 1l� ). Labels of different
curves and data sets are the same as in Fig. 1. Note that the disconti-
nuity of solutions at the edge of the incident beam (at ρ � 0.5l�) is an
artifact of the DA in which the reduced (discontinuous) density is
added to the diffuse (continuous) density; the exact RTE solutions
are continuous, albeit the radial derivative can be large at the edge
of the incident beam.
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Indeed, we have performed the optimization of μ for the den-
sity inside the medium, not on its boundary. We also note that,
in the case of noncontact measurements, the quantity of inter-
est is I�rd ; n̂�, where rd is a point on the surface corresponding
to a given optical detector (say, a CCD pixel) and n̂ is the unit
vector pointing from rd to the detector (say, the optical axis of
the CCD camera). In the case of contact measurements, some
convolution of the form

R
F �s�I�rd ; ŝ�d2s is measured, where

F �s� is the angular acceptance function; the signal becomes
equal to J�rd � in the special case F�s� � n̂ · ŝ.

8. SUMMARY AND DISCUSSION

We have discussed construction of the source function for the
DE, which serves as an approximation to a more fundamental
RTE. We were particularly interested in the case when the
incident radiation enters a multiply scattering medium from
outside through a diffuse-nondiffuse interface. The stationary
DE can be written as two first-order ordinary differential
equations (6) for the diffuse density and current ud and Jd .
These equations contain two source terms, E�r� and Q �r�.
Alternatively, one can transform Eq. (6) into a second-order
equation [Eq. (8)]. In this case, there is only one scalar source
term S�r�, which is expressed in terms of E�r� and Q �r�
according to Eq. (9). The main goal of this paper was to find
the optimal (that is, yielding the most accurate approximation)
relation between the source function of the RTE ε�r; ŝ� and the
function S�r�. The problem is nontrivial because the latter
function has fewer degrees of freedom. The dependence of
the RTE source term ε�r; ŝ� on ŝ is mimicked in the DA by
a more complicated dependence of S�r� on r.

In a DA, the total density and current of radiation energy in a
multiply scattering medium are given by sums of diffuse and
reduced components, i.e., u � ud � ur , J � Jd � Jr , where
the reduced density and current are expressed in terms of the
reduced intensity I r according to Eq. (7). However, the reduced
intensity can be defined in infinitely many different ways.
Each definition gives rise to a particular DA. Following [14],
we have parameterized this family of DAs by the reduced extinc-
tion coefficient μ, which is the rate of exponential decay of the
reduced intensity away from the source. It turns out that the
source functions E�r� and Q�r�, or S�r�, are defined by μ
uniquely, so that the task is to find the optimal value of μ.
We have approached this task by comparing the theoretical pre-
dictions of the DA to the results of Monte Carlo simulation and
optimizing the discrepancy in terms of μ and also in terms of the
extrapolated distance parameter l. We have found that the op-
timal value of l is close to the conventionally used value (be-
tween 2l�∕3 and 0.71l�), but our results for the optimal
value of μ are unconventional. The two conventional choices
for the reduced extinction coefficient are μ � μt or μ � μ�.
We, however, find that the optimal value of μ lies between these
two values; typically, μopt ≈ 3l� ≪ μt . We note, however, that
the numerical value of μopt depends on the scattering phase func-
tion of the medium (even if the scattering asymmetry parameter
is fixed) and, potentially, on the angle of incidence. We have
performed optimization for normal incidence only.

There are good reasons why the reduced extinction coeffi-
cient μ has not been considered previously. If the RTE source
ε�r; ŝ� is localized inside the medium and far from the boun-
daries and if the point of observation is far from the support of
ε�r; ŝ�, then the exact shape of S�r� is unimportant as long as
the zeroth moment M 0 �

R
S�r�d3r is approximately con-

stant. As was shown in [14], M 0 depends on μ weakly. This
consideration applies to the definitions of S�r� that were con-
sidered in Refs. [20–22]. If the source of the RTE is supported
on the medium boundary (the so-called surface source), the
next moment of S�r�, M1 �

R
rS�r�d3r, comes into play.

However, the typical boundary conditions for the DA result
in linear relations between M 0 and M1, e.g., Eq. (17), which
also seems to indicate that the exact value of μ is unimportant.
From the above arguments, we can conclude the following.
If the samples are a few centimeters thick and the region of
interest is sufficiently far from the boundaries (as is the case
in many implementations of optical tomography), the correct
definition of S�r� is not critical.

However, in reflection geometry and, especially, when the
region of interest is relatively shallow, the effects associated with
an imprecise definition of S�r� come to the fore. We emphasize
that the function S�r� depends strongly on μ. Correspondingly,
the solutions in the superficial layers also depend strongly on μ,
and this dependence is not reduced to multiplication by a con-
stant. We have found that a simple optimization procedure can
find an optimal value of μ, which can reduce the error quite
dramatically close to the surface and not affect the accuracy
far away from the surface. This result can be particularly useful
in imaging modalities involving diffuse reflection measure-
ments or when inhomogeneities of the medium can be located
close to the interface.

Fig. 11. Radial dependence of (a) the reflected density u and (b) the
normal component of the current Jz , evaluated at the interface z � 0.
Same parameters as in Fig. 10.
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The theory developed in this paper is, in fact, an attempt to
account phenomenologically for the transition layers without
abandoning the diffusion theory framework altogether. As
was shown in [13], the solutions to the RTE can be approxi-
mated with high accuracy by a superposition of the interior and
the boundary layer terms, where the former satisfies a DE.
However, the boundary layer term cannot be computed from
a DE. If it is computed according to the procedure described in
[13], an accurate approximation to the angular dependence of
the intensity at the medium boundary can be obtained.
Obviously, this dependence is highly nonlinear and cannot
be described in principle by a DA alone. The boundary layer
solution can be added to the DA solution. In this paper, how-
ever, we took a different approach and stayed entirely within
the framework of the diffusion theory. We have shown that
even in this case, the boundary layers can be accounted for
by appropriately splitting the total intensity into the reduced
and diffuse parts. It can also be said that the reduced intensity
is itself an additive term and that, by tuning the value of μ, we
can select the optimal value of this additive term. This obser-
vation establishes a correspondence between the approaches of
this paper and Ref. [13].

Finally, we have only considered stationary propagation in
this paper. If time-dependent solutions are sought, one can con-
sider additional adjustable parameters to improve accuracy at
short times. It was suggested that this can be achieved by using
the telegraph equation [33], which contains a second-order
time derivative. In the stationary regime, the telegraph equation
and the DE considered in this paper are equivalent. It is pos-
sible that combining the approach of this paper and using the
telegraph equation as suggested in Ref. [33] can produce an
accurate approximation at both short times and short distances.
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