Machida et al.

Vol. 26, No. 5/May 2009/dJ. Opt. Soc. Am. A 1291

Diffusion approximation revisited

Manabu Machida,’* George Yu. Panasyuk,1 John C. Schotland,! and Vadim A. Markel?

'Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
*Departments of Radiology and Bioengineering, University of Pennsylvania, Philadelphia,
Pennsylvania 19104, USA
*Corresponding author: mmachida@seas.upenn.edu

Received January 29, 2009; revised March 17, 2009; accepted March 19, 2009;
posted March 23, 2009 (Doc. ID 106888); published April 30, 2009

We study the diffusion approximation (DA) to the radiative transport equation (RTE) in infinite homogeneous
space. Different definitions of the reduced intensity I, that satisy a simplified RTE (without accounting for
scattering) and that are often used in the derivation of the DA are examined. By comparing the results of the
DA with exact solutions to the RTE, we come to the conclusion that the best accuracy in the DA is achieved if
we choose the definition of the reduced intensity (from a family of possible definitions) that results in 7,=0.
Thus, the separation of the specific intensity into reduced and diffuse components is unnecessary. We also dis-
cuss the conditions under which the DA is applicable. © 2009 Optical Society of America

OCIS codes: 030.5620, 290.1990, 170.5280.

1. INTRODUCTION

The theoretical analysis of problems involving multiple
scattering of waves is frequently based on the radiative
transport equation (RTE) [1-4]. In many practical appli-
cations, the diffusion approximation (DA) to the RTE can
be used. The advantage of the DA is its relative math-
ematical simplicity. It is of particular interest in biomedi-
cal imaging of tissues with multiply scattered light [5-7].
The diffusion equation (DE) depends on a number of pa-
rameters and functions that are inherited from the RTE.
These include the diffusion and absorption coefficients,
the extrapolation distance (which appears in the bound-
ary conditions) and the source function. While the defini-
tion of the absorption coefficient is quite straightforward,
a significant effort has been devoted to obtaining an accu-
rate expression that relates the diffusion coefficient to the
parameters of the RTE [8-13]. The boundary conditions
for the DE and the extrapolation distance have been con-
sidered in detail [14-16]. The source function of the the
DE has also been discussed in [17—-20]. The optimal shape
of the source function was deduced by comparison of the
analytical solution to the DE with experimental measure-
ments [17-19] or to the results of Monte Carlo simula-
tions [20]. However, the question was not studied system-
atically from the theoretical point of view. The main
purpose of this paper is to address this gap.

In the transport theory, the primary physical quantity
of interest is the specific intensity I(r,§) where r is the
position and the unit vector § specifies the direction in
which light propagates. In the DA one is interested only
in the angularly averaged quantities u(r) and J(r) [de-
fined below in Egs. (6) and (7)], which have the physical
meaning of electromagnetic energy density and current.
Correspondingly, the mathematical form of the source
term in the RTE is markedly different from that in the
DE. Namely, in the case of RTE, the source term is a func-
tion of both r and § and can be written as €(r,S). For ex-
ample, a point unidirectional source of the form
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€(r,8) = Ad(r)8(s - §), 1)

describes a narrow beam of light of total power A injected
into a scattering medium in the direction of §,. Without
loss of generality, we assume that the injection point co-
incides with the origin of the laboratory frame. In the case
of the DE, the source term is a function of position only
and is denoted by S(r). Obviously, a transition from the
RTE with a point unidirectional source of the form (1) to
the DE requires that S(r) cannot be spherically symmet-
ric. This deviation from spherical symmetry is required to
capture the dependence of €(r,S) on the direction §.

The above fact has been widely recognized in the litera-
ture. The frequently accepted approach is to use the
source function for the DE in the form of a “dipole.” For
example, in [17], the source was assumed to be constant
inside a half-sphere. In this geometry, the source is char-
acterized not only by location but also by direction. In
[18,19], the problem was considered in which a narrow
collimated beam is injected into a highly scattering me-
dium from vacuum. The source function was modeled in
these references as a point that is displaced from the
boundary into the medium by a distance Ax, which must
be determined experimentally. In [20], the DA (in the 1D
geometry) was interpreted as the P; approximation in
which the higher angular moments of the RTE source
function (1) appear naturally. Yet another commonly used
alternative is to assume that S(r) is an exponentially de-
caying function along the ray that points from the origin
in the direction §; and zero everywhere else [3]. This form
of S(r) can be obtained by decomposing the specific inten-
sity into its reduced and diffuse components [3,21] I,(r,S)
and I;(r,S), respectively. The DA is then made for the dif-
fuse component. However, this approach contains a step
that is quite arbitrary. We will see below that a family of
different DAs can be obtained by using different defini-
tions of I,. The correct DA must be chosen by comparing
the solutions to the DE to those of the RTE at large dis-
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tances from the source. We will show that the most logical
choice is I, =0; correspondingly, the DA must be applied to
the total specific intensity. Thus, we find that introduction
of the reduced intensity in the context of the DA is unnec-
essary.

This paper is organized as follows. In Section 2 we
briefly review the RTE and define the density and current
of electromagnetic energy. In Section 3, we use the RTE to
derive asymptotic expressions for these two quantities. In
Section 4, we propose a systematic method for deriving
the DA. The method accounts for the ambiguity in the
definition of I, by introducing a new adjustable parameter
that determines the rate of exponential decay of the
source function on the ray defined above. In Section 5 we
compare the density of electromagnetic radiation com-
puted from the RTE and from the DE. We come to the con-
clusion that the introduction of the reduced intensity is
not justified and that the most logical choice is 1,=0. The
DA is then made for the total specific intensity. In this
section, we also discuss the conditions under which the
DA is applicable. Section 6 contains a summary of ob-
tained results. Some mathematical properties of the dif-
fuse mode of the RTE are given in Appendix A.

2. RADIATIVE TRANSPORT EQUATION

We consider the RTE in an infinite, spatially uniform, iso-
tropic medium, which is of the form

(é ° V + /-Lt)I(r’é) = Mg fA(é’él)I(r’ér)dzs, + E(I‘,é), (2)

where u,=pu,+p, is the total attenuation coefficient; u,
and u, are the absorption and scattering coefficients, re-
spectively; A(S,8’) is the phase function normalized by
the condition

f Ls'ABG.S) =1 (3)

and e(r,S) is the source term of the form (1). The isotropy
of space implies that the phase function can be expanded
as

A(8,8) =D AY,,(8)Y; (8, (4)
Im

where Y;,,(8) are the spherical functions (viewed here as
functions of the unit vector §) and Ay=1. The first mo-
ment of the phase function is the so-called scattering
asymmetry parameter g,

A1=g=§-Jd23’§'A(§,§')$l. (5)

Several physical models for the higher-order coefficients
A; have been proposed. In the commonly used Henyey—
Greenstein model [22], A;=g’. The density of the electro-
magnetic energy u(r) and the current of energy J(r) are
expressed as the zeroth and the first angular moments of
the specific intensity

1
u(r)=- J d3sI(r,s), (6)
c
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J(r) = J d%ssl(r,8), (7)

where ¢ is the average speed of light in the medium.

3. DENSITY AND CURRENT FROM THE
RTE

An explicit solution to Eq. (2) with the source (1) can be
derived by the method of rotated reference frames [23,24].
The solution can be written as

Ir,8)=A > D Xh(MY$:8)Y,608).  (8)

m==% 1 1'=|m|

In this expansion, Y}, (§;T) are the spherical functions de-
fined in a reference frame whose z-axis coincides with the
direction of the unit vector r. A detailed definition of these
functions is given in [23,24], but is not needed here. In-
deed, to compute the density and the current according to
Egs. (6) and (7), we require only the two integrals

f d%5Y),,(8;%) = 478080, )

4
d’s8Y,,,(8;%) =1 ?5115mo~ (10)

The expansion coefficients x};,(r) are given by the ex-
pression

mo 1

)(Zl,(r) =7 2 (— 1)M
WV’O.ZO_Z’M:—Z

Ay (DY, DI
2

1
.
l1=1'+2,0 li-1'|+21,0
XECI,M,Z’,—MCl,m,Z’,— kl—l’|+2j(>\ i )’ (11)
Jj=0 n( )

where 7=min(/,!’) and various quantities appearing in
Eq. (11) are explained below in Eqs. (12)-(15). First, the
coefficients o; ([=0,1,2,...) are given by

0= pg+ (1 -4y, (12)

where A; are the expansion coefficients in Eq. (4). Second,
\,,(M) and |y,(M)) are the eigenvalues and the eigenvec-
tors of a set of infinite, tridiagonal, symmetric matrices
B(M) (parameterized by the integer M) whose elements
are of the form

by (M) &y g1 + by 1 (M) Sy g4

UBGD|I') = , (13)

\J”a’lo’l/

where [,I’ =|M| and
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12 - M?

bl(M)= m

(14)

Third, Cﬁzi’igmz are the Clebsch—Gordan -coefficients.

Fourth, k;(x) =—ilh§1)(ix) are the modified spherical Bessel
functions of the second kind (defined here without the 7/2
factor). Finally, the spectrum of eigenvalues of all matri-
ces B(M) is symmetric. That is, for each eigenvalue X\,
there is also an eigenvalue -\, and the summation in Eq.
(11) is carried out only over such indices n that \,>0.
Thus, the notation X, should be understood as

Sh=> fo (15)
n \,>0

We now use the integrals (9) and (10) to compute the
density and the current as

©

AZ
u(r) = ;2 V2L + 1x5,(r)Py(3¢ - ), (16)
=0
AR o
J(r)= —52 V2L + 1x3(r)Py(8g - £), (17)
VO =0

where P;(x) are the Legendre polynomials. The functions
ng(r) and X(l)l(r) are significantly simplified compared to
the more general functions Xﬁ,(r). Thus, for Xgl(r), we
have

o 1 (0ly,,(0))(y,(0)2) r
Xou(r) = k; . (18)

v A (0)

o060, n 3(0)

The expression for X(l)l(r) is more involved. It is possible
to show that

r)= —
XS fora| 4 A3(0) "\ X, 0)
V201 +1) ,<1|yn(1)>(yn(1)|l>k ( r )
o3 (1) /|

(19)

where k;(z)=dk;(z)/dz.

We seek an expression for the density and current far
from the source, so that r in the above expressions is suf-
ficiently large. A more precise mathematical formulation
of this condition will become clear momentarily. The func-
tions k;(x) decay exponentially as exp(—x). Let the largest
eigenvalue of the matrix B(0) be A4 and the corresponding
eigenvector be |y;). We will refer to this eigenstate as the
diffusion mode. As was shown in [24], the spectrum of ei-
genvalues is discrete for N >1/y,;, and the largest eigen-
value A, is in the discrete spectrum. Therefore, there is a
finite gap AN between the largest and the second largest
eigenvalues of B(0). In many practical situations, this gap
is quite significant, as is illustrated in Fig. 1(a). In addi-
tion, A4 is typically much larger than the maximum eigen-
value of all the matrices B(M) where |[M|> 0. This is illus-
trated in Fig. 1(b). Thus, at sufficiently large distances
from the source, we can neglect the second term in the
square brackets in Eq. (19). Further, we can keep only one
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Fig. 1. Eigenvalues of the matrices B(M) for the following pa-
rameters: u,=0.03 cm™!, u,=500 cm™!, g=0.98. These param-
eters are typical for biological tissues in the near-IR spectral
range. (a) All eigenvalues of B(0) versus the eigenvalue number
n. (b) The maximum eigenvalues of the matrices B(M) versus M.
In simulations, infinite matrices B(M) were truncated so that the
size of each matrix was N=10°.

term in the summations over n in both Eqs. (18) and (19),
namely, the term corresponding to the diffusion mode. We
then obtain

) 1 <0b’d>0’d|l>k ( r ) 20)
r =~ — N b
Xol ZWV”UOUZ }\2 1 )\d

(21)

-1 (1 l
- Ay >k,< ' )

[ ny /-
2007 A g
The above equalities are exponentially accurate when
exp(—-k) <1, where
r AN

K= — .
Ng g — AN

(22)

It is now possible to state the condition under which
Fick’s law,

J=-DVu, (23)

is applicable. This condition is r/\;> 1. Indeed, if this in-
equality holds, we can write approximately Vu=%du/dr
and neglect the tangential derivative of the factors
Py(8¢-T) in Eq. (16). The accuracy of this approximation is
algebraic, and the error is of the order of O(r/\,), while
the error in Egs. (20) and (21) is of the order of
Olexp(-«)]. Note, however, that for isotropic sources of
the form e=A48(r), Fick’s law is exponentially accurate.
Indeed, if the expression (16) is integrated over §g, only
the /=0 term remains nonzero. Therefore, the equality
Vu=%du/dr is, in this case, exact.
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The diffusion coefficient D in Eq. (23) can easily be
found from Egs. (16), (17), (20), and (21). As was men-
tioned above, in evaluating the gradient of Eq. (16), the
tangential derivative can be neglected. We then obtain

(lys) [ oo
D=c —N\g. (24)

Olyg) V 8oy
If we also take into account that o= u, and that the char-
acteristic equation for the diffusion mode implies

[b1/\ooo11(1]yg)=Ng(0|yy) with b;=1/1/3, we arrive at the
result

D =cu\>. (25)

Thus, the diffusion coefficient is defined by the average
speed of light in the medium, the absorption coefficient,
and the largest eigenvalue of B(0). Some mathematical
properties of the diffusion eigenvalue \; and of the corre-
sponding eigenvector |y;) are given in Appendix A.

Introducing the diffuse wave number k;=1/\; and us-
ing Eqs. (16) and (20), we can write the density u(r) in the
form

k
u(r) = ABdE Sk (kqr)Y 1, ®)Y; (89),  (26)
Im

(RTE) _ 90
S =1 @l 1)0_12<0|yd><3’d|l>- (27)

In particular,

where

ST = 200y ) y4l0),  ST™ = 2u,\ 1 (Olyg)y4l0).
(28)

We will see below that a similar expansion (but with dif-
ferent coefficients SEQA)) can be obtained in the DA.

4. DIFFUSION APPROXIMATION

The diffusion approximation (DA) to the RTE (2) is usu-
ally obtained as follows. We first expand the specific in-
tensity as

I(r,é) =Ir(r’§) +Id(r’§)7 (29)

where I, is the reduced intensity, which is defined to sat-
isfy a reduced RTE, and I; is the “diffuse” component of
the specific intensity. It is usually assumed that I; obeys
(approximately) a DE, while I, is highly singular and,
therefore, must be considered separately [3].

In this paper, we point out that the reduced intensity
can be defined in more than one way. Thus, for example,
we can require that the reduced intensity satisfy the RTE
(2) in which we set u,=0. This leads to the equation

(3-V + p)I(r,8) = e(r,8). (30)

We can also formally set A(§,§’)=0 in Eq. (2) and obtain
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(8- V+u)(r,8) = (r,s). (31)

In highly scattering media such that w,> u,, the above
two definitions result in reduced intensities that decay
with very different exponential rates.

In the standard approach to the DA, however, neither
Eq. (30) nor Eq. (31) is used. Instead, the reduced inten-
sity is defined by

(8- V+u)L(r,8) = €(r,8), (32)

where w'=1/€¢*=p,+(1-g)u, is the reciprocal of the
transport mean free path ¢*. We note the obvious inequal-
ity u,<p*<pu,. The definition (32) utilizes a more physi-
cally relevant quantity compared with Egs. (30) and (31),
namely, the reduced scattering coefficient u.=(1-g)u,.
Thus Eq. (32) predicts that the reduced intensity in a me-
dium with strictly forward-peaked scattering (g=1) is no
different from that in a medium with no scattering at all
(us=0), as one could expect on physical grounds. The de-
ficiency of the definitions (30) and (31) is that the first is
completely independent of u, while the second is indepen-
dent of g.

In spite of the above, all three definitions (30)—(32) are
ad hoc and need justification. Such justification can be ob-
tained only by direct comparison with the RTE. This will
be done below. However, there is no compelling reason to
restrict consideration to the three discrete values of the
coefficient that enters the definition of reduced intensity
(either u,, u;, or u*). Instead, we will pose a more general
problem. Suppose that I, is defined by

(8- V+wl,(r,8) =e€(r,s), (33)

where u is an arbitrary positive constant (additional con-
straints on the values of x will be imposed later). We will
view u as a free parameter and compare the results ob-
tained by making the DA for a given value of u with the
predictions of radiative transport theory.

We now proceed with the derivation of the DA. First,
we substitute the decomposition (29) into Eq. (2) and ob-
tain the equation for the diffuse component,

(é -V+ Iu't)ld = lu‘sAId + €, (34)
where the reduced source function e, is given by
€(r,8) = (uA -, + W, (35)

and I, satisfies Eq. (33). In the above two equations, A de-
notes the linear operator defined by the integral in the
right-hand side of Eq. (2).

We seek an approximate solution to Eq. (34) in the form

1,(r,8) = (c/4m)uy(r) + (3/4m)5 - I (). (36)

It can be verified by direct integration of Eq. (36), accord-
ing to Eqgs. (6) and (7), that u,; and J; are the energy den-
sity and current associated with the diffuse intensity 1.

The DA is obtained by substitution of the ansatz (36)
into Eq. (34) and by considering the first two moments
(with respect to the angular variable) of the resultant
equation. The substitution yields
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(8-V + pg)ug +3/c(8-V+ p)s- I, = (dmlc)e..  (37)

We now evaluate the zeroth and the first moments of the
above equation with respect to §. In the first case, we in-
tegrate Eq. (37) over d2s and, in the second case, over
§d%s. This leads to the two equations

V‘Jd+c,uaud=E, (38)

Vug+ (3ule)d, = (3/0)Q, (39)

where the scalar and the vector source terms E and Q are
given by the expressions

E(r) = J d%se,(r,8), (40)

Q(r) = f d%s8e(r,8). (41)

We can use Eq. (35) to express the above two functions in
terms of the reduced intensity I,:

E(I‘) = (la - lu‘a) J szIr(ry é) ) (42)

Q(r)=(ﬁ—u*)Jd2‘s§L(r,§). (43)

It can now be seen why the choice u=u* is special: it
causes Q(r) to vanish. We will show, however, that ac-
counting for this term in the DE does not lead to addi-
tional difficulties.

At this point, we require a specific expression for the
reduced intensity. It can be easily seen that the solution
to Eq. (33) with the source (1) is

exp(— ur)
L(r,8) = ATM (8 = 89) AT - §o). (44)

We then substitute Eq. (44) into Eqs. (42) and (43) and ob-
tain

exp(- jir)

E<r>=A<ﬁ—ua>T“a<f—éO>, (45)
 exp-an)

Q) = Asy(ji- ) — ol -8 (46)

At the next step, we exclude the current from Eqgs. (38)
and (39) and obtain a DE with respect to the density
u4(r), namely,

(-DV*+ e, )uy(r) =S(r), (47)
where
D =c/3u* (48)

is the diffusion coefficient obtained in the approximation
specified by Eqgs. (29) and (36), and the source term is
given by

S(r)=E()-€¢*V -Q(r). (49)
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The diffusion coefficient (48) and the similar quantity
(25) obtained from the RTE under more general condi-
tions differ, but approach each other in the limit w,/u,
—0. In this limit, \; is sharply bounded by the inequali-
ties (A8) of Appendix A. If only the lowest-order (in wu,/u,)
non-vanishing term is retained, Ay~ 1/+3u,u*. Substitu-
tion of this expression into Eq. (25) results in D=~c¢/3u* in
agreement with Eq. (48). However, the solution to the DE
(4'7) depends on D exponentially. Therefore, even a small
error in D can result in an exponentially large discrep-
ancy between the solution to the DE and the solution to
the RTE. It has been suggested that the DA can be “cor-
rected” by using a more accurate expression (25) for the
diffusion coefficient [11-13]. This correction does not fol-
low in a mathematically consistent way from the DA.
Nevertheless, it has proved to be useful. We will adopt
this approach below. Specifically, we will use the expres-
sion (25) instead of Eq. (48) for the coefficient D that ap-
pears in the DE (47).

The second term in (49) contains a derivative of a delta
function, namely, V- Q. Although this has not been stated
explicitly in the literature, it seems plausible that the
choice = p* in the definition of I, has been made because
it results in Q=0. However, the presence of the term V-Q
does not pose a mathematical problem. To evaluate the
latter, we act with the operator V on Eq. (43) and use Eq.
(33). A straightforward calculation yields

exp(- jur)

V-Q=A(u- M*){(S(I‘) - ﬁr—Qﬁ(f' - §0)] - (50)

Combining this expression with Eq. (45), we obtain

B2 = paptexp(-mr)
3 S —Sp) (-

=t
S(r) = A{ - . or) + -
w W r

(51)

It can be seen that the source term contains two contri-
butions. The first term describes a point source located at
the origin; this term vanishes if u=u*. The second term is
a function that exponentially decays along the ray r=8§;
this term vanishes if i=1u,u*. The integral source is

j d3rS(r) = A1 - u /). (52)

We expect on physical grounds the above expression to be
positive and conclude that p must satisfy u> pu,. It also
can be expected that the integral (52) should be equal to
A, which is the overall power of the source. This already
suggests that the proper choice for u is u=°. We will
come to the same conclusion using more rigorous argu-
ments below. At this point, we note that under the condi-
tions when the DA is typically used, u, <u* and the choice
= may result in a relatively small error. Nevertheless,
this error is both non-negligible and easily avoidable. We
will also show that the choice p=% results in a more natu-
ral and transparent theory.

Note that the current is given in the DA by the formula

Jy(r)==DVuylr)+Q(r). (53)
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We now use the above results to compute the density
ug4(r) due to the source function S(r) (51). We have

ugy(r) = J &' Gr,r")S(xr'), (54)
where
exp(-kglr —r'|)
Gry)=——"—+ (565)
4mD|r — 1’|
is the free-space Green’s function of the DE (47) and
kd = V/C,LLG/D = 1/)\(1 (56)

is the diffuse wave number. Note that, as discussed above,
we use the expression (25) for the diffusion coefficient.
It is convenient to expand the Green’s function as

k
Grx) = = S ilkar Deilkar) Vi)Y, (), (57

im

where i,(x) and %/(x) are the modified spherical Bessel
functions of the first and second kind, respectively, and r_
and r~ are the lesser and greater of r and r’. Note that
k(x) is defined here without the 7/2 factor, so that &q(x)
=exp(—x)/x, etc. From this, we obtain

0

k
g(r) = de Yin®) | dr ()% k(e
Im

0

xfd%-’S(r’)Y;m(f-’), (58)
We now note the following. The Green’s function (55) de-
cays exponentially as exp(—kg|r—r’|), while the the
source function (51) decays as exp(—ur’). On physical
grounds, we expect that the density uy(r) should decay
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slower than the source function S(r) when r—o. This
leads to the requirement p >k, which is in addition to the
previously imposed requirement u>pu,. If we assume
that the point of observation r is sufficiently far from the
origin, the radial integral in Eq. (58) converges while r_
=r’ and r- =r. The density can then be written with expo-
nentially high precision in the form (26), namely, as

k
ualv) = A% S SRk Vi (DY, B0, (59)
Im

where
op__ ATH B2 - st
S = — O+ —— Qu(ulky). (60)
M wkq
Here
Qip) = f ij(x)exp(- px)dx, (61)
0

is the Legendre function of the second kind, and we have
used the specific form of the source function (51). Note
that the Legendre function must be evaluated for argu-
ments that are larger than unity. In particular,

1 p+1 p p+l
=—In——r, =-1+-1
Qo(p) 9 np—l Q1(p) 9 np—l

(62)

5. RESULTS AND DISCUSSION

We now compare the results derived in Sections 3 and 4.
In Fig. 2, we plot the absolute difference between the ex-
pansion coefficients S}RTE) that are defined in Eq. (27) and
S;DE) that are defined in Eq. (60). Comparison is made
only for /=0 and /=1. The higher-order coefficients S;RTE)

107 1 1 | I I I I T T
- DE RTE
1o-2 b 55 — T =0 — SPE) _ g(RTE) 1=0
N I=1—py \ =1 76y"
1073 = < = %
0 Sy 0t N .
1074 |- R . - e
e a/u | e SN /e
JPr Y A N N E O N 10-2 L1 1 1 1
0.25 0.5 075 1 125 15 175 2 0.75 1 1.25 1.5 1.75 2
L T I T o T
DE) (RTE) =0 ——
\ SPB _ g =1 ————
N (c)
1071 | =
\\\\\\\\ 10—1 - R -
1072 |- B/ P = i/
1 1 ! | ! [ R R N SR
0.75 1 1.25 1.5 1.75 2 1.25 1.5 1.75 2 225 25 275 3

Fig. 2. Absolute difference S}DE)—SgRTE) as a function of u/u* for [=0,1 and for the following sets of parameters: (a) u,=0.03 cm™, x,
=500 cm™, g=0.98 (these are the “physiological” parameters typical of biological tissues in the near-IR spectral range; same parameters
have been used in Fig. 1). (b) u,=1 em™!, u,=5 ecm™!, g=0 (isotropic scattering). (¢) u,=1 cm™!, u,=10 cm™!, g=0.5 [anisotropic scattering

but same wu* as in (b)]. (d) u,=u,=1 cm™!, g=0.5.
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depend on the higher-order coefficients A; (in addition to
g=A7). The DA is independent of these higher-order coef-
ficients and, therefore, direct comparison for /> 1 is inap-
propriate.

It can be seen that in all cases, the point u=u* has no
special significance. The difference SE)DE)—SBRTE) is rather
flat, especially in the three cases (a)—(c) for which the DA
is typically considered to be applicable. If only the zeroth-
order expansion coefficients are examined, one can con-
clude that the choice of & does not matter at all, and one
can choose without loss of accuracy any value of u, pro-
vided that w=pu*. However, the first-order difference
S(lDE)—S(lRTE) monotonically decreases with u. This sug-
gests that the optimal choice is u==. It may seem that
this choice is paradoxical and mathematically ill defined.
However, this is not so. The quantity u,4(r) is well defined
in the limit g — . Indeed, we have

lim SP® =1, 1lim SP°® =ky/3us, SPP =0 forl>1.

p—o p—
(63)
From this, we find
ug(r) = (1 + €kt - §g)exp(— kyqr)/47Dr
= (14 kgt - §9)G(r,0). (64)

Alternatively, we can take the w—oo limit of Eq. (54)
with S(r) given by Eq. (51). We obtain

lim S(r) = A(1 - €*8, - V) 8(r), (65)
%
lim wy(r) = A1 + €+8; - V)G (r,7)]pro0. (66)
a—°

The same result can be obtained even more directly by
noting that the limit u— o« corresponds to I,=0. We thus
can apply the DA to Eq. (34) in which the reduced source
€, must be substituted by the original source of the RTE,
€, given in Eq. (1). This yields E(r)=Adr), Q(r)
=A§y8(r) and, according to Eq. (49), S(r)=AQ1
—€*8-V)S(r). This is in agreement with Eq. (65). Thus, it
can be seen that the use of the reduced intensity I, is un-
necessary. Note that its introduction actually decreases
the accuracy of the DA. Also, the reduced intensity cannot
be interpreted as the correct specific intensity in the vi-
cinity of the source. This is clear already from the ambi-
guity in the definition of I,, as discussed in Section 4.

We now compare the density u(r) computed using the
RTE [according to Eq. (16)] without any approximations
and the density u,(r) obtained in the DA. The results are
shown in Fig. 3. The relative error A, defined as

|t — gl
A= g (67)
u

is plotted as a function of wu for various distances to the
source (r=10¢* and r=20¢*) and various orientations of
the point of observation relative to the direction of inci-
dence §j. It can be seen that the point n=u* is in no way
special or optimal. Depending on the angle 6
=arccos(f'-§y), the discrepancy has minima at certain
seemingly random values of u. None of these values can
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be universally used because each of them minimizes the
error only for a specific distance r, a specific angle 6, and
a specific set of parameters u,, u;, and g. At the same
time, it is obvious that the choice u= is almost always
preferable to w=pu*.

To conclude this section, we discuss the choice u=u* in
more detail. We will denote the source function that cor-
responds to this case by S*(r) and the corresponding mo-
ments SEDE) by S;. As can be seen from Egs. (51) and (60),

exp(-u'r)
S*(r) = AMST5(I‘ =50, (68)
S; = (uy/ka)QwTky), (69)

where u,=(1-g)u, is the reduced scattering coefficient. In
biomedical optics, it is typical to work in the regime in
which w*>#k,, although this inequality is never very
strong. Thus, for the physiological parameters used in
Figs. 1, 2(a), and 3(a), u*/ky~10. Nevertheless, for this
ratio of w*/ky, the asymptotic formulas for Qy(u*/k,) and
Q1(u*/ky) are already very accurate and we obtain

Sy = plwr, ST~ (gl w)(kal/3p). (70)

These expressions differ from the first two equations in
Eqgs. (63) by the constant factor u /u*.

We can make an additional approximation and assume
that all higher-order coefficients S; (I>1) are zero. Then
it turns out that the density u; obtained in the DA with
= w* differs from the density obtained for p=c (which we
deem here to be more accurate) by the overall factor of
we/ we. In the case of physiological parameters, this factor
is close to unity. Essentially, this approach was adopted
by us earlier in [25] where the factor u./u*=pu. ¢+ appears,
for example, in Eq. (16). Note that in [25], we have implic-
itly assumed that S7=0 for />1 by truncating the Taylor
expansion of the Green’s function G(r,r’) at the first
order, namely, by writing G(r,r')=G(r,ry)+(r’
-rg) -V G(r,r')|,—g, where ry is the location of the
source. This approximation was then used in the integral
of the form (54).

Thus, in [25], we have utilized the choice w=u* and ob-
tained the result for u, the differs from Eq. (65) or (66) by
the overall factor u./u*, which may seem to be an insig-
nificant correction. However, an additional approximation
was used in [25] (neglecting the higher-order moments S’
as discussed above) that was not well justified. In a sense,
there were two inaccuracies in [25] that canceled each
other. The first inaccuracy was neglecting the higher-
order moments, and the second inaccuracy was the incor-
rect choice of m. Further, in less ideal cases, the ratio
e/ w may be significantly different from unity, yet the
DA could still be applicable sufficiently far from the
source. In such cases, an incorrect choice of u can lead to
significant errors. Finally, the derivation of the DA pre-
sented in this paper is mathematically consistent and
based on direct comparison with the RTE rather than on
an ad hoc choice of pu.
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Fig. 3. Relative error A (67) as a function of u/u* for different values of the distance from the source r and the angle 6, where cos 6
=§,-T. The distance to the source is r=(a) 10¢+, (b) 20€*. All parameters are the same as in Fig. 1 and Fig. 2(a).

So far, we have not discussed the conditions under
which the DA is applicable. This question is both simple
and difficult. It is often remarked that the DA is valid
when u, < u,. However, it is not always clear what exactly
is meant by applicability of the DA.

If it is deemed that the DA is applicable if the exact
density of electromagnetic energy u defined by Eq. (6) sat-
isfies (approximately) the diffusion equation (47), then
the inequality u,<u, is not really required (for the re-
minder of this section, the subscript d in the referenced
formulas should be omitted). Indeed, the diffusion equa-
tion for u follows from the continuity equation (38) and
Fick’s law (23). But the continuity equation that couples
the density and the current is exact irrespective of param-
eters. As for Fick’s law, the condition for its applicability
was discussed at the end of Section 3 and reads r>\,.
Thus, at sufficiently large distances from the source,
Fick’s law is accurate irrespective of the ratio u,/u,. It
should be kept in mind though that when the ratio u,/u,
is not small, expressions (25) and (48) can yield very dif-
ferent values of the diffusion coefficient, and the diffusion
constant appearing in Fick’s law is given by the former
expression.

If, however, we deem the DA to be accurate when the
specific intensity I(r,s) is well approximated by the ex-
pansion (36), then the applicability of the DA is more dif-
ficult to show. Indeed, for the expansion (36) to be accu-
rate, it is required that all the coefficients X;';,(r) in the
expansion (8) be negligibly small for /,/’>1. Now con-
sider the expression (11) for x;,(r). If we make an approxi-
mation in which only one term in the summation over n is
retained, namely, the term that corresponds to the diffu-
sion mode (see Appendix A), the above condition can not
be proved. Indeed, the Bessel functions k;(x) increase fac-
torially with / (for large values of [ and a fixed x), while
the components of the diffuse eigenvector (/|y,;) decrease
with [ only exponentially, as is shown in Appendix A.
Thus, the factorial growth of the first factor always over-
powers the exponential decay of the second. In fact, if an
accurate pointwise approximation to I(r,S§) is being
sought, it is not correct to retain only the diffuse mode in
Eq. (11). Instead, summation over all modes must be per-
formed, including the modes of the continuous spectrum.
The terms in this summation have different sign. As a re-
sult, if the summation is performed with sufficient nu-



Machida et al.

merical accuracy, the resultant coefficients X?;,(r) decrease
with [ and [’ so that the expansion (8) is, in fact, conver-
gent. (When the summation is performed numerically, one
should be conscious of the round-off errors, which can be-
come large and even dominant for very large values of [
and ['.) Therefore, the proof of pointwise convergence of
the specific intensity to the “diffuse” value given by for-
mula (36) is difficult to obtain, and we are not certain
whether it is known. Such a proof could be, however,
purely of academic interest. The reason is that all physi-
cal detectors always measure the specific intensity inte-
grated over a finite area and a finite solid angle. This in-
tegration regularizes the formula (11) and can greatly
improve numerical convergence. It therefore can be stated
that the condition of validity of the DA depends on the
type of detector used.

6. SUMMARY

We have systematically developed the diffusion approxi-
mation (DA) to the radiative transport equation (RTE) in
infinite homogeneous space. We have examined different
admissible definitions of the reduced intensity I, that is
commonly used in the derivation of the DA. The existing
ambiguity in the definition of I, affects the form of the
source function for the DE. By comparing the results of
the DA with more rigorous solutions to the RTE, we have
found that the best accuracy is achieved if we set 7,=0. In
this case the source function for the DE is given by Eq.
(65) and the density of electromagnetic energy is given by
Eq. (66) or, equivalently, by Eq. (64). We conclude that the
separation of the total specific intensity into the reduced
and the diffuse components is not justified and, in a typi-
cal derivation of the DA, leads to additional errors. Thus,
the DA should be made for the total specific intensity.

The theory developed in this paper is not intended to
significantly improve the accuracy of the DA, although
some improvement can be anticipated. It is rather aimed
at removing the existing ambiguities and formulating the
DA in a mathematically consistent way. We also study the
general limits of applicability of Fick’s law and derive cer-
tain mathematical properties of the so-called diffuse mode
of the RTE.

APPENDIX A: DIFFUSION MODE

In this appendix, we derive some mathematical properties
of the diffusion mode, more specifically, of the eigenvalue
\¢ and of the corresponding eigenvector |y;). By defini-
tion, Ay is the largest eigenvalue of the infinite, tridiago-
nal, real and symmetric matrix B(0) that has been de-
fined in Section 3, Eq. (13). We denote the elements of the
first superdiagonal of this matrix by B;,, where

b
B=U-1BO)= ==, [=12,... (Al)

\O1-107

The coefficients b; are given in Eq. (14) in which we must
set M =0, so that b;=1/y4/2—1. Note that

B1=1/\3uqn*, (A2)
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Bo= 2N 15 g + py(1 - Ay)], (A3)

lim B;=1/2u,. (A4)
|
In obtaining the limit (A4), we have assumed that
lim; ... A;=0 and lim;_.., 03= ;.
We start by deriving the lower and upper bounds of \;.
The upper bound is obtained from the Gershgorin theo-
rem, which states that

Nl < max > (A=) UBOI") =By + By (AB)
S

Here we have assumed that oy<o; <oy -, as is typically
the case, and therefore 8> B5> Bs....

The lower bound can be derived by considering the se-
quence of truncated matrices B;(0) (j=1,2,...), which are
obtained by keeping only the first j rows and columns of
the infinite matrix B(0). As a direct consequence of the
Cauchy interlace theorem, we can state that the eigenval-
ues of B;(0) and Bj,1(0) interlace. Consequently, the maxi-
mum eigenvalue of each matrix B;(0), A4, increases mono-
tonically with j. We thus have Aj; <\go<---<\; where
)\dZHmj*m )\dj FOI‘j=3,

Nas = \B1 + Bs. (A6)
Thus, we have proved the inequality
VBL+ B3 <N = B1+ Bs. (A7)

Substituting B8; and By from Eqs. (A2) and (A3), we can
rewrite this as

\ 1+ n 1+ \,’/77
- < N\g S , (A8)
VB V3o p*
where
4 M
- (A9)

n=——————.
5 po + ps(1-Ay)

In the limit when u,<<u,, 7 can be viewed as a small pa-
rameter.

A sharper estimate can be obtained if we use \ 44 as the
lower bound for \4. The former is given by the formula

A \/ giepieal \/1 1BR
= —————————— + —_—
“ 2 (B2 + B2+ BY)?

(A10)

Further, the gap between the largest and the second
largest eigenvalues of B(0) can be estimated as follows.
Let the second largest eigenvalue be \;. From the Gersh-
gorin theorem we have A\;<max(B3;,B2+B3). Combining
this with Eq. (A7), we find that

AN =Ny -\, = max[y B} + B3 — max(By, By + B3),0].
(A11)

Note that in the limit of strong scattering we have B;
> B,, B3, and the first number in the square brackets is
positive, so that the “max” can be omitted and we have
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AN= BT+ Ba - B (A12)

Finally, we consider the components of the eigenvector
lyg). The first two components (/=0 and /=1) can be ex-
panded in powers of 7 as

(Olyg) = 1/{2[1 - 129+ O (2], (A13)

(Alyg) = 1/\2[1+ O()]. (A14)
At large values of the index [, the components (l|y,) decay
exponentially [24] as

(l — ).

(Ulyq) = exp(- 70), (A15)

By considering the three-term recurrence relation for
{l|yq) in the limit [ —c when 8;— 1/2u,, we find

7=In[u g+ (u\g)” - 1]. (A16)
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