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Diffusion approximation revisited
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We study the diffusion approximation (DA) to the radiative transport equation (RTE) in infinite homogeneous
space. Different definitions of the reduced intensity Ir that satisy a simplified RTE (without accounting for
scattering) and that are often used in the derivation of the DA are examined. By comparing the results of the
DA with exact solutions to the RTE, we come to the conclusion that the best accuracy in the DA is achieved if
we choose the definition of the reduced intensity (from a family of possible definitions) that results in Ir=0.
Thus, the separation of the specific intensity into reduced and diffuse components is unnecessary. We also dis-
cuss the conditions under which the DA is applicable. © 2009 Optical Society of America

OCIS codes: 030.5620, 290.1990, 170.5280.
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. INTRODUCTION
he theoretical analysis of problems involving multiple
cattering of waves is frequently based on the radiative
ransport equation (RTE) [1–4]. In many practical appli-
ations, the diffusion approximation (DA) to the RTE can
e used. The advantage of the DA is its relative math-
matical simplicity. It is of particular interest in biomedi-
al imaging of tissues with multiply scattered light [5–7].
he diffusion equation (DE) depends on a number of pa-
ameters and functions that are inherited from the RTE.
hese include the diffusion and absorption coefficients,
he extrapolation distance (which appears in the bound-
ry conditions) and the source function. While the defini-
ion of the absorption coefficient is quite straightforward,
significant effort has been devoted to obtaining an accu-

ate expression that relates the diffusion coefficient to the
arameters of the RTE [8–13]. The boundary conditions
or the DE and the extrapolation distance have been con-
idered in detail [14–16]. The source function of the the
E has also been discussed in [17–20]. The optimal shape

f the source function was deduced by comparison of the
nalytical solution to the DE with experimental measure-
ents [17–19] or to the results of Monte Carlo simula-

ions [20]. However, the question was not studied system-
tically from the theoretical point of view. The main
urpose of this paper is to address this gap.
In the transport theory, the primary physical quantity

f interest is the specific intensity I�r , ŝ� where r is the
osition and the unit vector ŝ specifies the direction in
hich light propagates. In the DA one is interested only

n the angularly averaged quantities u�r� and J�r� [de-
ned below in Eqs. (6) and (7)], which have the physical
eaning of electromagnetic energy density and current.
orrespondingly, the mathematical form of the source

erm in the RTE is markedly different from that in the
E. Namely, in the case of RTE, the source term is a func-

ion of both r and ŝ and can be written as ��r , ŝ�. For ex-
mple, a point unidirectional source of the form
1084-7529/09/051291-10/$15.00 © 2
��r, ŝ� = A��r���ŝ − ŝ0�, �1�

escribes a narrow beam of light of total power A injected
nto a scattering medium in the direction of ŝ0. Without
oss of generality, we assume that the injection point co-
ncides with the origin of the laboratory frame. In the case
f the DE, the source term is a function of position only
nd is denoted by S�r�. Obviously, a transition from the
TE with a point unidirectional source of the form (1) to

he DE requires that S�r� cannot be spherically symmet-
ic. This deviation from spherical symmetry is required to
apture the dependence of ��r , ŝ� on the direction ŝ.

The above fact has been widely recognized in the litera-
ure. The frequently accepted approach is to use the
ource function for the DE in the form of a “dipole.” For
xample, in [17], the source was assumed to be constant
nside a half-sphere. In this geometry, the source is char-
cterized not only by location but also by direction. In
18,19], the problem was considered in which a narrow
ollimated beam is injected into a highly scattering me-
ium from vacuum. The source function was modeled in
hese references as a point that is displaced from the
oundary into the medium by a distance �x, which must
e determined experimentally. In [20], the DA (in the 1D
eometry) was interpreted as the P1 approximation in
hich the higher angular moments of the RTE source

unction (1) appear naturally. Yet another commonly used
lternative is to assume that S�r� is an exponentially de-
aying function along the ray that points from the origin
n the direction ŝ0 and zero everywhere else [3]. This form
f S�r� can be obtained by decomposing the specific inten-
ity into its reduced and diffuse components [3,21] Ir�r , ŝ�
nd Id�r , ŝ�, respectively. The DA is then made for the dif-
use component. However, this approach contains a step
hat is quite arbitrary. We will see below that a family of
ifferent DAs can be obtained by using different defini-
ions of Ir. The correct DA must be chosen by comparing
he solutions to the DE to those of the RTE at large dis-
009 Optical Society of America
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ances from the source. We will show that the most logical
hoice is Ir=0; correspondingly, the DA must be applied to
he total specific intensity. Thus, we find that introduction
f the reduced intensity in the context of the DA is unnec-
ssary.

This paper is organized as follows. In Section 2 we
riefly review the RTE and define the density and current
f electromagnetic energy. In Section 3, we use the RTE to
erive asymptotic expressions for these two quantities. In
ection 4, we propose a systematic method for deriving
he DA. The method accounts for the ambiguity in the
efinition of Ir by introducing a new adjustable parameter
hat determines the rate of exponential decay of the
ource function on the ray defined above. In Section 5 we
ompare the density of electromagnetic radiation com-
uted from the RTE and from the DE. We come to the con-
lusion that the introduction of the reduced intensity is
ot justified and that the most logical choice is Ir=0. The
A is then made for the total specific intensity. In this

ection, we also discuss the conditions under which the
A is applicable. Section 6 contains a summary of ob-

ained results. Some mathematical properties of the dif-
use mode of the RTE are given in Appendix A.

. RADIATIVE TRANSPORT EQUATION
e consider the RTE in an infinite, spatially uniform, iso-

ropic medium, which is of the form

�ŝ · � + �t�I�r, ŝ� = �s� A�ŝ, ŝ��I�r, ŝ��d2s� + ��r, ŝ�, �2�

here �t=�a+�s is the total attenuation coefficient; �a
nd �s are the absorption and scattering coefficients, re-
pectively; A�ŝ , ŝ�� is the phase function normalized by
he condition

� d2s�A�ŝ, ŝ�� = 1; �3�

nd ��r , ŝ� is the source term of the form (1). The isotropy
f space implies that the phase function can be expanded
s

A�ŝ, ŝ�� = �
lm

AlYlm�ŝ�Ylm
* �ŝ��, �4�

here Ylm�ŝ� are the spherical functions (viewed here as
unctions of the unit vector ŝ) and A0=1. The first mo-
ent of the phase function is the so-called scattering

symmetry parameter g,

A1 = g = ŝ ·� d2s�ŝ�A�ŝ, ŝ�� � 1. �5�

everal physical models for the higher-order coefficients
l have been proposed. In the commonly used Henyey–
reenstein model [22], Al=gl. The density of the electro-
agnetic energy u�r� and the current of energy J�r� are

xpressed as the zeroth and the first angular moments of
he specific intensity

u�r� =
1

c � d2sI�r, ŝ�, �6�
J�r� =� d2sŝI�r, ŝ�, �7�

here c is the average speed of light in the medium.

. DENSITY AND CURRENT FROM THE
TE
n explicit solution to Eq. (2) with the source (1) can be
erived by the method of rotated reference frames [23,24].
he solution can be written as

I�r, ŝ� = A �
m=−�

�

�
l,l�=�m�

�

�ll�
m �r�Ylm�ŝ; r̂�Yl�m�ŝ0; r̂�. �8�

n this expansion, Ylm�ŝ ; r̂� are the spherical functions de-
ned in a reference frame whose z-axis coincides with the
irection of the unit vector r̂. A detailed definition of these
unctions is given in [23,24], but is not needed here. In-
eed, to compute the density and the current according to
qs. (6) and (7), we require only the two integrals

� d2sYlm�ŝ; r̂� = �4��l0�m0, �9�

� d2sŝYlm�ŝ; r̂� = r̂�4�

3
�l1�m0. �10�

The expansion coefficients �ll�
m �r� are given by the ex-

ression

�ll�
m �r� =

�− 1�m

2��	l	l�
�

M=−l̄

l̄

�− 1�M


 �
n

�
�l�yn�M���yn�M��l��

�n
3�M�


�
j=0

l̄

Cl,M,l�,−M
�l−l��+2j,0Cl,m,l�,−m

�l−l��+2j,0k�l−l��+2j	 r

�n�M�
 , �11�

here l̄=min�l , l�� and various quantities appearing in
q. (11) are explained below in Eqs. (12)–(15). First, the
oefficients 	l �l=0,1,2, . . . � are given by

	l = �a + �s�1 − Al�, �12�

here Al are the expansion coefficients in Eq. (4). Second,
n�M� and �yn�M�� are the eigenvalues and the eigenvec-
ors of a set of infinite, tridiagonal, symmetric matrices
�M� (parameterized by the integer M) whose elements
re of the form

�l�B�M��l�� =
bl�M��l�,l−1 + bl+1�M��l�,l+1

�	l	l�

, �13�

here l , l � �M� and
�
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bl�M� =�l2 − M2

4l2 − 1
. �14�

hird, Cj1m1j2m2

j3m3 are the Clebsch–Gordan coefficients.

ourth, kl�x�=−ilhl
�1��ix� are the modified spherical Bessel

unctions of the second kind (defined here without the � /2
actor). Finally, the spectrum of eigenvalues of all matri-
es B�M� is symmetric. That is, for each eigenvalue �,
here is also an eigenvalue −�, and the summation in Eq.
11) is carried out only over such indices n that �n
0.
hus, the notation �n� should be understood as

�
n

�fn = �
�n
0

fn. �15�

We now use the integrals (9) and (10) to compute the
ensity and the current as

u�r� =
A
c �

l=0

�

�2l + 1�0l
0 �r�Pl�ŝ0 · r̂�, �16�

J�r� =
Ar̂

�3
�
l=0

�

�2l + 1�1l
0 �r�Pl�ŝ0 · r̂�, �17�

here Pl�x� are the Legendre polynomials. The functions

0l
0 �r� and �1l

0 �r� are significantly simplified compared to
he more general functions �ll�

m �r�. Thus, for �0l
0 �r�, we

ave

�0l
0 �r� =

1

2��	0	l
�

n

�
�0�yn�0���yn�0��l�

�n
3�0�

kl	 r

�n�0�
 . �18�

The expression for �1l
0 �r� is more involved. It is possible

o show that

�1l
0 �r� =

1

2��	1	l
�− �

n

�
�1�yn�0���yn�0��l�

�n
3�0�

kl�	 r

�n�0�

−

�2l�l + 1�

r �
n

�
�1�yn�1���yn�1��l�

�n
2�1�

kl	 r

�n�1�
� ,

�19�

here kl��z�=dkl�z� /dz.
We seek an expression for the density and current far

rom the source, so that r in the above expressions is suf-
ciently large. A more precise mathematical formulation
f this condition will become clear momentarily. The func-
ions kl�x� decay exponentially as exp�−x�. Let the largest
igenvalue of the matrix B�0� be �d and the corresponding
igenvector be �yd�. We will refer to this eigenstate as the
iffusion mode. As was shown in [24], the spectrum of ei-
envalues is discrete for �
1/�t, and the largest eigen-
alue �d is in the discrete spectrum. Therefore, there is a
nite gap �� between the largest and the second largest
igenvalues of B�0�. In many practical situations, this gap
s quite significant, as is illustrated in Fig. 1(a). In addi-
ion, �d is typically much larger than the maximum eigen-
alue of all the matrices B�M� where �M�
0. This is illus-
rated in Fig. 1(b). Thus, at sufficiently large distances
rom the source, we can neglect the second term in the
quare brackets in Eq. (19). Further, we can keep only one
erm in the summations over n in both Eqs. (18) and (19),
amely, the term corresponding to the diffusion mode. We
hen obtain

�0l
0 �r� 


1

2��	0	l

�0�yd��yd�l�

�d
3 kl	 r

�d

 , �20�

�1l
0 �r� 


− 1

2��	1	l

�1�yd��yd�l�

�d
3 kl�	 r

�d

 . �21�

The above equalities are exponentially accurate when
xp�−���1, where

� =
r

�d

��

�d − ��
. �22�

It is now possible to state the condition under which
ick’s law,

J = − D � u, �23�

s applicable. This condition is r /�d�1. Indeed, if this in-
quality holds, we can write approximately �u= r̂�u /�r
nd neglect the tangential derivative of the factors
l�ŝ0 · r̂� in Eq. (16). The accuracy of this approximation is
lgebraic, and the error is of the order of O�r /�d�, while
he error in Eqs. (20) and (21) is of the order of
�exp�−���. Note, however, that for isotropic sources of

he form �=A��r�, Fick’s law is exponentially accurate.
ndeed, if the expression (16) is integrated over ŝ0, only
he l=0 term remains nonzero. Therefore, the equality
u= r̂�u /�r is, in this case, exact.

ig. 1. Eigenvalues of the matrices B�M� for the following pa-
ameters: �a=0.03 cm−1, �s=500 cm−1, g=0.98. These param-
ters are typical for biological tissues in the near-IR spectral
ange. (a) All eigenvalues of B�0� versus the eigenvalue number
. (b) The maximum eigenvalues of the matrices B�M� versus M.
n simulations, infinite matrices B�M� were truncated so that the
ize of each matrix was N=103.
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The diffusion coefficient D in Eq. (23) can easily be
ound from Eqs. (16), (17), (20), and (21). As was men-
ioned above, in evaluating the gradient of Eq. (16), the
angential derivative can be neglected. We then obtain

D = c
�1�yd�

�0�yd�
� 	0

3	1
�d. �24�

f we also take into account that 	0=�a and that the char-
cteristic equation for the diffusion mode implies
b1 /�	0	1��1 �yd�=�d�0 �yd� with b1=1/�3, we arrive at the
esult

D = c�a�d
2 . �25�

hus, the diffusion coefficient is defined by the average
peed of light in the medium, the absorption coefficient,
nd the largest eigenvalue of B�0�. Some mathematical
roperties of the diffusion eigenvalue �d and of the corre-
ponding eigenvector �yd� are given in Appendix A.

Introducing the diffuse wave number kd=1/�d and us-
ng Eqs. (16) and (20), we can write the density u�r� in the
orm

u�r� = A
kd

D �
lm

Sl
�RTE�kl�kdr�Ylm�r̂�Ylm

* �ŝ0�, �26�

here

Sl
�RTE� =� 	0

�2l + 1�	l
2�0�yd��yd�l�. �27�

n particular,

S0
�RTE� = 2�0�yd��yd�0�, S1

�RTE� = 2�a�d�0�yd��yd�0�.

�28�

e will see below that a similar expansion (but with dif-
erent coefficients Slm

�DA�) can be obtained in the DA.

. DIFFUSION APPROXIMATION
he diffusion approximation (DA) to the RTE (2) is usu-
lly obtained as follows. We first expand the specific in-
ensity as

I�r, ŝ� = Ir�r, ŝ� + Id�r, ŝ�, �29�

here Ir is the reduced intensity, which is defined to sat-
sfy a reduced RTE, and Id is the “diffuse” component of
he specific intensity. It is usually assumed that Id obeys
approximately) a DE, while Ir is highly singular and,
herefore, must be considered separately [3].

In this paper, we point out that the reduced intensity
an be defined in more than one way. Thus, for example,
e can require that the reduced intensity satisfy the RTE

2) in which we set �s=0. This leads to the equation

�ŝ · � + �a�Ir�r, ŝ� = ��r, ŝ�. �30�

e can also formally set A�ŝ , ŝ �=0 in Eq. (2) and obtain
�
�ŝ · � + �t�Ir�r, ŝ� = ��r, ŝ�. �31�

n highly scattering media such that �t��a, the above
wo definitions result in reduced intensities that decay
ith very different exponential rates.
In the standard approach to the DA, however, neither

q. (30) nor Eq. (31) is used. Instead, the reduced inten-
ity is defined by

�ŝ · � + �*�Ir�r, ŝ� = ��r, ŝ�, �32�

here �*=1/�*=�a+ �1−g��s is the reciprocal of the
ransport mean free path �*. We note the obvious inequal-
ty �a��*��t. The definition (32) utilizes a more physi-
ally relevant quantity compared with Eqs. (30) and (31),
amely, the reduced scattering coefficient �s�= �1−g��s.
hus Eq. (32) predicts that the reduced intensity in a me-
ium with strictly forward-peaked scattering �g=1� is no
ifferent from that in a medium with no scattering at all
�s=0�, as one could expect on physical grounds. The de-
ciency of the definitions (30) and (31) is that the first is
ompletely independent of �s while the second is indepen-
ent of g.
In spite of the above, all three definitions (30)–(32) are

d hoc and need justification. Such justification can be ob-
ained only by direct comparison with the RTE. This will
e done below. However, there is no compelling reason to
estrict consideration to the three discrete values of the
oefficient that enters the definition of reduced intensity
either �a, �t, or �*). Instead, we will pose a more general
roblem. Suppose that Ir is defined by

�ŝ · � + �̄�Ir�r, ŝ� = ��r, ŝ�, �33�

here �̄ is an arbitrary positive constant (additional con-
traints on the values of �̄ will be imposed later). We will
iew �̄ as a free parameter and compare the results ob-
ained by making the DA for a given value of �̄ with the
redictions of radiative transport theory.
We now proceed with the derivation of the DA. First,

e substitute the decomposition (29) into Eq. (2) and ob-
ain the equation for the diffuse component,

�ŝ · � + �t�Id = �sAId + �r, �34�

here the reduced source function �r is given by

�r�r, ŝ� = ��sA − �t + �̄�Ir �35�

nd Ir satisfies Eq. (33). In the above two equations, A de-
otes the linear operator defined by the integral in the
ight-hand side of Eq. (2).

We seek an approximate solution to Eq. (34) in the form

Id�r, ŝ� = �c/4��ud�r� + �3/4��ŝ · Jd�r�. �36�

t can be verified by direct integration of Eq. (36), accord-
ng to Eqs. (6) and (7), that ud and Jd are the energy den-
ity and current associated with the diffuse intensity Id.

The DA is obtained by substitution of the ansatz (36)
nto Eq. (34) and by considering the first two moments
with respect to the angular variable) of the resultant
quation. The substitution yields
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�ŝ · � + �a�ud + 3/c�ŝ · � + �*�ŝ · Jd = �4�/c��r. �37�

e now evaluate the zeroth and the first moments of the
bove equation with respect to ŝ. In the first case, we in-
egrate Eq. (37) over d2s and, in the second case, over

ˆd2s. This leads to the two equations

� · Jd + c�aud = E, �38�

�ud + �3�*/c�Jd = �3/c�Q, �39�

here the scalar and the vector source terms E and Q are
iven by the expressions

E�r� =� d2s�r�r, ŝ�, �40�

Q�r� =� d2sŝ�r�r, ŝ�. �41�

e can use Eq. (35) to express the above two functions in
erms of the reduced intensity Ir:

E�r� = ��̄ − �a� � d2sIr�r, ŝ�, �42�

Q�r� = ��̄ − �*� � d2sŝIr�r, ŝ�. �43�

t can now be seen why the choice �̄=�* is special: it
auses Q�r� to vanish. We will show, however, that ac-
ounting for this term in the DE does not lead to addi-
ional difficulties.

At this point, we require a specific expression for the
educed intensity. It can be easily seen that the solution
o Eq. (33) with the source (1) is

Ir�r, ŝ� = A
exp�− �̄r�

r2 ��ŝ − ŝ0���r̂ − ŝ0�. �44�

e then substitute Eq. (44) into Eqs. (42) and (43) and ob-
ain

E�r� = A��̄ − �a�
exp�− �̄r�

r2 ��r̂ − ŝ0�, �45�

Q�r� = Aŝ0��̄ − �*�
exp�− �̄r�

r2 ��r̂ − ŝ0�. �46�

t the next step, we exclude the current from Eqs. (38)
nd (39) and obtain a DE with respect to the density
d�r�, namely,

�− D�2 + c�a�ud�r� = S�r�, �47�

here

D = c/3�* �48�

s the diffusion coefficient obtained in the approximation
pecified by Eqs. (29) and (36), and the source term is
iven by

S�r� = E�r� − �* � · Q�r�. �49�
The diffusion coefficient (48) and the similar quantity
25) obtained from the RTE under more general condi-
ions differ, but approach each other in the limit �a /�s

0. In this limit, �d is sharply bounded by the inequali-
ies (A8) of Appendix A. If only the lowest-order (in �a /�s)
on-vanishing term is retained, �d
1/�3�a�*. Substitu-
ion of this expression into Eq. (25) results in D
c /3�* in
greement with Eq. (48). However, the solution to the DE
47) depends on D exponentially. Therefore, even a small
rror in D can result in an exponentially large discrep-
ncy between the solution to the DE and the solution to
he RTE. It has been suggested that the DA can be “cor-
ected” by using a more accurate expression (25) for the
iffusion coefficient [11–13]. This correction does not fol-
ow in a mathematically consistent way from the DA.
evertheless, it has proved to be useful. We will adopt

his approach below. Specifically, we will use the expres-
ion (25) instead of Eq. (48) for the coefficient D that ap-
ears in the DE (47).
The second term in (49) contains a derivative of a delta

unction, namely, � ·Q. Although this has not been stated
xplicitly in the literature, it seems plausible that the
hoice �̄=�* in the definition of Ir has been made because
t results in Q=0. However, the presence of the term � ·Q
oes not pose a mathematical problem. To evaluate the
atter, we act with the operator � on Eq. (43) and use Eq.
33). A straightforward calculation yields

� · Q = A��̄ − �*����r� − �̄
exp�− �̄r�

r2 ��r̂ − ŝ0�� . �50�

ombining this expression with Eq. (45), we obtain

S�r� = A�−
�̄ − �*

�*
��r� +

�̄2 − �a�*

�*

exp�− �̄r�

r2 ��r̂ − ŝ0�� .

�51�

t can be seen that the source term contains two contri-
utions. The first term describes a point source located at
he origin; this term vanishes if �̄=�*. The second term is
function that exponentially decays along the ray r̂= ŝ0;

his term vanishes if �̄=��a�*. The integral source is

� d3rS�r� = A�1 − �a/�̄�. �52�

e expect on physical grounds the above expression to be
ositive and conclude that �̄ must satisfy �̄
�a. It also
an be expected that the integral (52) should be equal to
, which is the overall power of the source. This already

uggests that the proper choice for �̄ is �̄=�. We will
ome to the same conclusion using more rigorous argu-
ents below. At this point, we note that under the condi-

ions when the DA is typically used, �a��* and the choice
¯ =�* may result in a relatively small error. Nevertheless,
his error is both non-negligible and easily avoidable. We
ill also show that the choice �̄=� results in a more natu-

al and transparent theory.
Note that the current is given in the DA by the formula

J �r� = − D � u �r� + �*Q�r�. �53�
d d
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We now use the above results to compute the density
d�r� due to the source function S�r� (51). We have

ud�r� =� d3r�G�r,r��S�r��, �54�

here

G�r,r�� =
exp�− kd�r − r���

4�D�r − r��
�55�

s the free-space Green’s function of the DE (47) and

kd = �c�a/D = 1/�d �56�

s the diffuse wave number. Note that, as discussed above,
e use the expression (25) for the diffusion coefficient.
It is convenient to expand the Green’s function as

G�r,r�� =
kd

D �
lm

il�kdr��kl�kdr
�Ylm�r̂�Ylm
* �r̂��, �57�

here i��x� and k��x� are the modified spherical Bessel
unctions of the first and second kind, respectively, and r�

nd r
 are the lesser and greater of r and r�. Note that
��x� is defined here without the � /2 factor, so that k0�x�
exp�−x� /x, etc. From this, we obtain

ud�r� =
kd

D �
lm

Ylm�r̂��
0

�

dr��r��2il�kdr��kl�kdr
�


� d2r̂�S�r��Ylm
* �r̂��, �58�

e now note the following. The Green’s function (55) de-
ays exponentially as exp�−kd �r−r� � �, while the the
ource function (51) decays as exp�−�̄r��. On physical
rounds, we expect that the density ud�r� should decay

ig. 2. Absolute difference Sl
�DE�−Sl

�RTE� as a function of �̄ /�* fo
500 cm−1, g=0.98 (these are the “physiological” parameters typi
ave been used in Fig. 1). (b) �a=1 cm−1, �s=5 cm−1, g=0 (isotrop
ut same �* as in (b)]. (d) � =� =1 cm−1, g=0.5.
a s
lower than the source function S�r� when r→�. This
eads to the requirement �̄
kd which is in addition to the
reviously imposed requirement �̄
�a. If we assume
hat the point of observation r is sufficiently far from the
rigin, the radial integral in Eq. (58) converges while r�

r� and r
=r. The density can then be written with expo-
entially high precision in the form (26), namely, as

ud�r� = A
kd

D �
lm

Sl
�DE�kl�kdr�Ylm�r̂�Ylm

* �ŝ0�, �59�

here

Sl
�DE� = −

�̄ − �*

�*
�l0 +

�̄2 − �a�*

�*kd
Ql��̄/kd�. �60�

ere

Ql�p� =�
0

�

il�x�exp�− px�dx, �61�

s the Legendre function of the second kind, and we have
sed the specific form of the source function (51). Note
hat the Legendre function must be evaluated for argu-
ents that are larger than unity. In particular,

Q0�p� =
1

2
ln

p + 1

p − 1
, Q1�p� = − 1 +

p

2
ln

p + 1

p − 1
. �62�

. RESULTS AND DISCUSSION
e now compare the results derived in Sections 3 and 4.

n Fig. 2, we plot the absolute difference between the ex-
ansion coefficients Sl

�RTE� that are defined in Eq. (27) and

l
�DE� that are defined in Eq. (60). Comparison is made
nly for l=0 and l=1. The higher-order coefficients Sl

�RTE�

1 and for the following sets of parameters: (a) �a=0.03 cm−1, �s
iological tissues in the near-IR spectral range; same parameters

tering). (c) �a=1 cm−1, �s=10 cm−1, g=0.5 [anisotropic scattering
r l=0,
cal of b
ic scat
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epend on the higher-order coefficients Al (in addition to
=A1). The DA is independent of these higher-order coef-
cients and, therefore, direct comparison for l
1 is inap-
ropriate.
It can be seen that in all cases, the point �̄=�* has no

pecial significance. The difference S0
�DE�−S0

�RTE� is rather
at, especially in the three cases (a)–(c) for which the DA

s typically considered to be applicable. If only the zeroth-
rder expansion coefficients are examined, one can con-
lude that the choice of �̄ does not matter at all, and one
an choose without loss of accuracy any value of �̄, pro-
ided that �̄��*. However, the first-order difference

1
�DE�−S1

�RTE� monotonically decreases with �̄. This sug-
ests that the optimal choice is �̄=�. It may seem that
his choice is paradoxical and mathematically ill defined.
owever, this is not so. The quantity ud�r� is well defined

n the limit �̄→�. Indeed, we have

lim
�̄→�

S0
�DE� = 1, lim

�̄→�

S1
�DE� = kd/3�*, Sl

�DE� = 0 for l 
 1.

�63�

rom this, we find

ud�r� = �1 + �*kdr̂ · ŝ0�exp�− kdr�/4�Dr

= �1 + �*kdr̂ · ŝ0�G�r,0�. �64�

Alternatively, we can take the �̄→� limit of Eq. (54)
ith S�r� given by Eq. (51). We obtain

lim
�̄→�

S�r� = A�1 − �*ŝ0 · ����r�, �65�

lim
�̄→�

ud�r� = A�1 + �*ŝ0 · �r��G��r,r���r�=0. �66�

he same result can be obtained even more directly by
oting that the limit �̄→� corresponds to Ir=0. We thus
an apply the DA to Eq. (34) in which the reduced source
r must be substituted by the original source of the RTE,
, given in Eq. (1). This yields E�r�=A��r�, Q�r�
Aŝ0��r� and, according to Eq. (49), S�r�=A�1
�*ŝ0 ·����r�. This is in agreement with Eq. (65). Thus, it
an be seen that the use of the reduced intensity Ir is un-
ecessary. Note that its introduction actually decreases
he accuracy of the DA. Also, the reduced intensity cannot
e interpreted as the correct specific intensity in the vi-
inity of the source. This is clear already from the ambi-
uity in the definition of Ir, as discussed in Section 4.

We now compare the density u�r� computed using the
TE [according to Eq. (16)] without any approximations
nd the density ud�r� obtained in the DA. The results are
hown in Fig. 3. The relative error �, defined as

� =
�u − ud�

u
, �67�

s plotted as a function of �̄ for various distances to the
ource (r=10�* and r=20�*) and various orientations of
he point of observation relative to the direction of inci-
ence ŝ0. It can be seen that the point �̄=�* is in no way
pecial or optimal. Depending on the angle �
arccos�r̂ · ŝ0�, the discrepancy has minima at certain
eemingly random values of �̄. None of these values can
e universally used because each of them minimizes the
rror only for a specific distance r, a specific angle �, and
specific set of parameters �a, �s, and g. At the same

ime, it is obvious that the choice �̄=� is almost always
referable to �̄=�*.
To conclude this section, we discuss the choice �̄=�* in
ore detail. We will denote the source function that cor-

esponds to this case by S*�r� and the corresponding mo-
ents Sl

�DE� by Sl
*. As can be seen from Eqs. (51) and (60),

S*�r� = A�s�
exp�− �*r�

r2 ��r̂ − ŝ0�, �68�

Sl
* = ��s�/kd�Ql��*/kd�, �69�

here �s�= �1−g��s is the reduced scattering coefficient. In
iomedical optics, it is typical to work in the regime in
hich �*�kd, although this inequality is never very

trong. Thus, for the physiological parameters used in
igs. 1, 2(a), and 3(a), �* /kd�10. Nevertheless, for this
atio of �* /kd, the asymptotic formulas for Q0��* /kd� and
1��* /kd� are already very accurate and we obtain

S0
* 
 �s�/�*, S1

* 
 ��s�/�*��kd/3�*�. �70�

hese expressions differ from the first two equations in
qs. (63) by the constant factor �s� /�*.
We can make an additional approximation and assume

hat all higher-order coefficients Sl
* �l
1� are zero. Then

t turns out that the density ud obtained in the DA with
¯ =�* differs from the density obtained for �̄=� (which we
eem here to be more accurate) by the overall factor of

s� /�*. In the case of physiological parameters, this factor
s close to unity. Essentially, this approach was adopted
y us earlier in [25] where the factor �s� /�*=�s��* appears,
or example, in Eq. (16). Note that in [25], we have implic-
tly assumed that Sl

*=0 for l
1 by truncating the Taylor
xpansion of the Green’s function G�r ,r�� at the first
rder, namely, by writing G�r ,r��
G�r ,r0�+ �r�
r0�� ·�r�G�r ,r���r�=0, where r0 is the location of the
ource. This approximation was then used in the integral
f the form (54).

Thus, in [25], we have utilized the choice �̄=�* and ob-
ained the result for ud the differs from Eq. (65) or (66) by
he overall factor �s� /�*, which may seem to be an insig-
ificant correction. However, an additional approximation
as used in [25] (neglecting the higher-order moments Sl

*

s discussed above) that was not well justified. In a sense,
here were two inaccuracies in [25] that canceled each
ther. The first inaccuracy was neglecting the higher-
rder moments, and the second inaccuracy was the incor-
ect choice of �̄. Further, in less ideal cases, the ratio

s� /�* may be significantly different from unity, yet the
A could still be applicable sufficiently far from the

ource. In such cases, an incorrect choice of �̄ can lead to
ignificant errors. Finally, the derivation of the DA pre-
ented in this paper is mathematically consistent and
ased on direct comparison with the RTE rather than on
n ad hoc choice of �̄.
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So far, we have not discussed the conditions under
hich the DA is applicable. This question is both simple
nd difficult. It is often remarked that the DA is valid
hen �a��s. However, it is not always clear what exactly

s meant by applicability of the DA.
If it is deemed that the DA is applicable if the exact

ensity of electromagnetic energy u defined by Eq. (6) sat-
sfies (approximately) the diffusion equation (47), then
he inequality �a��s is not really required (for the re-
inder of this section, the subscript d in the referenced

ormulas should be omitted). Indeed, the diffusion equa-
ion for u follows from the continuity equation (38) and
ick’s law (23). But the continuity equation that couples
he density and the current is exact irrespective of param-
ters. As for Fick’s law, the condition for its applicability
as discussed at the end of Section 3 and reads r��d.
hus, at sufficiently large distances from the source,
ick’s law is accurate irrespective of the ratio �a /�s. It
hould be kept in mind though that when the ratio �a /�s
s not small, expressions (25) and (48) can yield very dif-
erent values of the diffusion coefficient, and the diffusion
onstant appearing in Fick’s law is given by the former
xpression.

ig. 3. Relative error � (67) as a function of �̄ /�* for different
ŝ0 · r̂. The distance to the source is r= �a� 10�*, (b) 20�*. All para
If, however, we deem the DA to be accurate when the
pecific intensity I�r , ŝ� is well approximated by the ex-
ansion (36), then the applicability of the DA is more dif-
cult to show. Indeed, for the expansion (36) to be accu-
ate, it is required that all the coefficients �ll�

m �r� in the
xpansion (8) be negligibly small for l , l�
1. Now con-
ider the expression (11) for �ll�

m �r�. If we make an approxi-
ation in which only one term in the summation over n is

etained, namely, the term that corresponds to the diffu-
ion mode (see Appendix A), the above condition can not
e proved. Indeed, the Bessel functions kl�x� increase fac-
orially with l (for large values of l and a fixed x), while
he components of the diffuse eigenvector �l �yd� decrease
ith l only exponentially, as is shown in Appendix A.
hus, the factorial growth of the first factor always over-
owers the exponential decay of the second. In fact, if an
ccurate pointwise approximation to I�r , ŝ� is being
ought, it is not correct to retain only the diffuse mode in
q. (11). Instead, summation over all modes must be per-

ormed, including the modes of the continuous spectrum.
he terms in this summation have different sign. As a re-
ult, if the summation is performed with sufficient nu-

of the distance from the source r and the angle �, where cos �
s are the same as in Fig. 1 and Fig. 2(a).
values
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erical accuracy, the resultant coefficients �ll�
m �r� decrease

ith l and l� so that the expansion (8) is, in fact, conver-
ent. (When the summation is performed numerically, one
hould be conscious of the round-off errors, which can be-
ome large and even dominant for very large values of l
nd l�.) Therefore, the proof of pointwise convergence of
he specific intensity to the “diffuse” value given by for-
ula (36) is difficult to obtain, and we are not certain
hether it is known. Such a proof could be, however,
urely of academic interest. The reason is that all physi-
al detectors always measure the specific intensity inte-
rated over a finite area and a finite solid angle. This in-
egration regularizes the formula (11) and can greatly
mprove numerical convergence. It therefore can be stated
hat the condition of validity of the DA depends on the
ype of detector used.

. SUMMARY
e have systematically developed the diffusion approxi-
ation (DA) to the radiative transport equation (RTE) in

nfinite homogeneous space. We have examined different
dmissible definitions of the reduced intensity Ir that is
ommonly used in the derivation of the DA. The existing
mbiguity in the definition of Ir affects the form of the
ource function for the DE. By comparing the results of
he DA with more rigorous solutions to the RTE, we have
ound that the best accuracy is achieved if we set Ir=0. In
his case the source function for the DE is given by Eq.
65) and the density of electromagnetic energy is given by
q. (66) or, equivalently, by Eq. (64). We conclude that the
eparation of the total specific intensity into the reduced
nd the diffuse components is not justified and, in a typi-
al derivation of the DA, leads to additional errors. Thus,
he DA should be made for the total specific intensity.

The theory developed in this paper is not intended to
ignificantly improve the accuracy of the DA, although
ome improvement can be anticipated. It is rather aimed
t removing the existing ambiguities and formulating the
A in a mathematically consistent way. We also study the
eneral limits of applicability of Fick’s law and derive cer-
ain mathematical properties of the so-called diffuse mode
f the RTE.

PPENDIX A: DIFFUSION MODE
n this appendix, we derive some mathematical properties
f the diffusion mode, more specifically, of the eigenvalue
d and of the corresponding eigenvector �yd�. By defini-
ion, �d is the largest eigenvalue of the infinite, tridiago-
al, real and symmetric matrix B�0� that has been de-
ned in Section 3, Eq. (13). We denote the elements of the
rst superdiagonal of this matrix by ��, where

�l = �l − 1�B�0��l� =
bl

�	l−1	l

, l = 1,2, . . . . �A1�

he coefficients bl are given in Eq. (14) in which we must
et M=0, so that bl= l /�4l2−1. Note that

� *
�1 = 1/ 3�a� , �A2�
�2 = 2/�15�*��a + �s�1 − A2��, �A3�

lim
l→�

�l = 1/2�t. �A4�

n obtaining the limit (A4), we have assumed that
iml→� Al=0 and liml→� 	l=�t.

We start by deriving the lower and upper bounds of �d.
he upper bound is obtained from the Gershgorin theo-
em, which states that

��d� � max
l

�
l�

�1 − �ll����l�B�0��l��� = �1 + �2. �A5�

ere we have assumed that 	0�	1�	2¯, as is typically
he case, and therefore �1
�2
�3. . ..

The lower bound can be derived by considering the se-
uence of truncated matrices Bj�0� �j=1,2, . . . �, which are
btained by keeping only the first j rows and columns of
he infinite matrix B�0�. As a direct consequence of the
auchy interlace theorem, we can state that the eigenval-
es of Bj�0� and Bj+1�0� interlace. Consequently, the maxi-
um eigenvalue of each matrix Bj�0�, �dj, increases mono-

onically with j. We thus have �d1��d2� ¯ ��d where
d=limj→� �dj. For j=3,

�d3 = ��1
2 + �2

2. �A6�

hus, we have proved the inequality

��1
2 + �2

2 � �d � �1 + �2. �A7�

ubstituting �1 and �2 from Eqs. (A2) and (A3), we can
ewrite this as

�1 + �

�3�a�*
� �d �

1 + ��

�3�a�*
, �A8�

here

� =
4

5

�a

�a + �s�1 − A2�
. �A9�

n the limit when �a��s, � can be viewed as a small pa-
ameter.

A sharper estimate can be obtained if we use �d4 as the
ower bound for �d. The former is given by the formula

�d4 =��1
2 + �2

2 + �3
2

2
�1 +�1 −

4�1
2�3

2

��1
2 + �2

2 + �3
2�2� .

�A10�

Further, the gap between the largest and the second
argest eigenvalues of B�0� can be estimated as follows.
et the second largest eigenvalue be �s. From the Gersh-
orin theorem we have �s�max��1 ,�2+�3�. Combining
his with Eq. (A7), we find that

�� � �d − �s � max���1
2 + �2

2 − max��1,�2 + �3�,0�.

�A11�

ote that in the limit of strong scattering we have �1
�2 ,�3, and the first number in the square brackets is

ositive, so that the “max” can be omitted and we have
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�� � ��1
2 + �2

2 − �1. �A12�

Finally, we consider the components of the eigenvector
yd�. The first two components (l=0 and l=1) can be ex-
anded in powers of � as

�0�yd� = 1/�2�1 − 1/2� + O��2��, �A13�

�1�yd� = 1/�2�1 + O��2��. �A14�

t large values of the index l, the components �l �yd� decay
xponentially [24] as

�l�yd� � exp�− �l�, �l → ��. �A15�

y considering the three-term recurrence relation for
l �yd� in the limit l→� when �l→1/2�t, we find

� = ln��t�d + ���t�d�2 − 1�. �A16�
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