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Abstract
We consider the inversion of the broken-ray Radon transform, a problem
that arises in the context of inverse transport theory in optical tomography.
We derive inversion formulas which allow the recovery of the scattering
and absorption coefficients of the radiative transport equation in the single-
scattering regime. Our results are illustrated with numerical simulations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The inverse transport problem consists of recovering the spatially varying absorption and
scattering coefficients of the interior of a highly scattering medium from measurements taken
on its boundary [2]. The problem has been widely studied in the context of optical tomography
(OT)—a biomedical imaging modality that makes use of multiply-scattered light to visualize
structural variations in the optical properties of tissue[1]. OT provides unique capabilities to
assess the physiological function including blood volume and tissue oxygenation.

The propagation of light in a random medium, taken to be the domain � ⊂ R
3, is governed

by the radiative transport equation (RTE):

ŝ · ∇I + (μa(r) + μs(r))I = μs(r)
∫

p(ŝ, ŝ′)I (r, ŝ′) d2s ′, r ∈ �. (1)

Here I (r, ŝ) denotes the specific intensity at the point r ∈ � in the direction ŝ, and μa and
μs are the absorption and scattering coefficients of the medium. The phase function p is
symmetric under the interchange of its arguments and normalized so that

∫
p(ŝ, ŝ′) d2s ′ = 1

for all ŝ. The specific intensity is also assumed to obey the half-range boundary condition

I (r, ŝ) = Iinc(r, ŝ), (r, ŝ) ∈ �−(�), (2)

where Iinc is the incident-specific intensity. We have introduced the sets �±(�) = {(r, ŝ) :
±r · n̂ > 0}, where n̂ is the outward unit normal to ∂�.
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Figure 1. Illustrating the geometry of a broken ray.

The inverse problem of optical tomography is to recover the pair of coefficients (μa, μs)

from outgoing measurements of the specific intensity on �+(�). Here we assume that the
phase function is known and has no spatial dependence. We introduce the albedo operator
A : Iinc �→ I |�+ . If A is known, then (μa, μs) can be reconstructed uniquely [4, 5, 9, 10]. This
result follows from analyzing the singularities of the albedo operator. The singular structure
can be used to recover (μa, μs) with the Holder stability. It is important to note that angularly
resolved measurements of the specific intensity are difficult to obtain in practice. The inverse
problem with angularly averaged data or partial angular data can be seen to be severely ill-
posed [2]. The effect of angular averaging is to destroy the singularities that are present in the
albedo operator. At best, it is possible to reconstruct the low-frequency parts of (μa, μs) with
logarithmic stability [2].

The albedo operator can be decomposed into a sum whose terms correspond to
successively higher orders of scattering. The lowest order term, which accounts for the
propagation of unscattered photons, is the most singular. The next term, which corresponds
to single-scattered photons (whose paths are the broken rays illustrated in figure 1) is less
singular. The higher-order terms are increasingly smooth at each order of scattering.

In [6, 7] we considered the problem of imaging an optically thin medium in the single-
scattering regime. In this method, which we refer to as single-scattering optical tomography
(SSOT), the specific intensity is related to the integral of the attenuation coefficient μt = μa+μs

along a broken ray. The aforementioned integral defines the broken-ray Radon transform of
μt , which is parametrized by the positions and directions of the source and detector in an
SSOT experiment.

We have studied the problem of recovering (μa, μs) by numerical inversion of the broken-
ray Radon transform [6]. By making use of singular-value analysis, it was found that this
inverse problem is mildly ill-posed, even if only two directions of measurement are employed.
In this work, we further explore this counterintuitive result by deriving explicit inversion
formulas for the broken-ray Radon transform and further investigating its mathematical
structure. The inversion formulas are tested in numerical simulations which illustrate the
nature of the singularities of the inverse problem.

The remainder of this paper is organized as follows. In section 2, the broken-ray transform
is defined and some relevant geometrical quantities are introduced. In section 3, inversion
formulas are derived for two cases: (i) assuming the medium has a spatially varying absorption
coefficient and a constant scattering coefficient (section 3.1) and (ii) assuming the medium has
spatially varying absorption and scattering coefficients (section 3.2). Numerical simulations
are presented in section 4. Finally, section 5 contains a discussion and a brief summary of our
results.
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2. The broken-ray Radon transform

The physics of the broken-ray Radon transform was discussed in [6]. The geometry of a broken
ray is illustrated in figure 1 for the case of a normally incident beam in the slab geometry.
Here we focus on the inverse problem of SSOT. We note that image reconstruction in SSOT
is performed slice-by-slice. A slice is determined by the direction vectors of the sources and
detectors, which are assumed to lie in the same plane. In the reference frame of figure 1, the
slices correspond to the planes x = const. Note that once a slice is selected, the source and
detector direction vectors are fixed. However, the positions of the sources and detectors can
be varied along the y-axis, subject to the constraint that the vertex R (the ray turning point)
lies within the slab 0 � z � L. The position of the source is denoted by y1 and the position of
the detector by y2; every distinct source–detector pair (y1, y2) corresponds to a unique broken
ray. The integral of the attenuation coefficient along a broken ray defines the data function
φ(y1, y2) which is given by

∫
BR(y1,y2)

μt (r(�)) d� − ln
μs(R(y1, y2))

μ̄s

= φ(y1, y2), (3)

as described in [6]. Here μ̄s is the background scattering coefficient of the medium, the
integral is evaluated along the broken ray BR(y1, y2), r is a two-dimensional position vector
in the yz-plane, and R(y1, y2) is the ray turning point. The inverse problem of SSOT is to
recover μt and μs from φ(y2, y1). The absorption coefficient μa can then be determined from
the difference between μt and μs . We note that if μs = μ̄s , then (3) becomes

∫
BR(y1,y2)

μt (r(�)) d� = φ(y1, y2), (4)

which defines the broken-ray Radon transform of μt .
Suppose that the scattering coefficient is constant and the absorption coefficient is spatially

varying. Then we will see that it is sufficient to consider a family of broken rays in which
y2 > y1. We denote the transverse source–detector separation by � = y2 − y1. If the angle
between the illumination and detection directions is θ , then � varies in the interval (0,�max),
where �max = L tan θ . The broken ray shown in figure 1(a) consists of two segments of length
L1 and L2, respectively, where

L1(�) = L − � cot θ = L(1 − �/�max), (5a)

L2(�) = � csc θ = (�/�max)

√
L2 + �2

max. (5b)

Next, suppose that the absorption and the scattering coefficients are both spatially varying.
In this case, measurements of the type shown in figure 1(a) are insufficient to reconstruct both
coefficients simultaneously. However, if two broken rays with a common vertex, as shown in
figure 1(b) are used, the inverse problem is formally determined and we will see that the pair
(μa, μs) can be uniquely recovered.

The measurement scheme described above is suitable for reconstructing an image in the
rectangular area defined by the inequalities 0 � z � L and ymin � y � ymax, where L is
the depth of the slab, and ymin, ymax are determined by the window in which the sources and
detectors are scanned.
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3. Inversion formulas

3.1. Spatially uniform scattering

If the scattering coefficient is spatially uniform, μs = μ̄s , then the logarithmic term on the
left-hand side of equation (3) vanishes. The image reconstruction problem is thus reduced to
recovering the function μt(y, z) from the integral equation∫

BR(y1,y2)

μt [y(�), z(�)] d� = φ(y1, y2). (6)

It is convenient to introduce the change of variables

y1 = w, y2 = w + �, (7)

and define a new data function according to

ψ(w,�) ≡ φ(w,w + �). (8)

Thus, we parametrize the data by the position of the source, w, and by the transverse source–
detector separation, �. Therefore, we can write

y(�) = w + η(�, �), z(�) = ζ(�, �), (9)

where the functions η(�, �), ζ(�, �) are independent of w. Taking the Fourier transform of
(6) with respect to w, we obtain the analog of the Fourier-slice theorem:∫ L1(�)+L2(�)

0
e−ikη(�,�)μ̃t (k, ζ(�, �)) d� = ψ̃(k,�), (10)

where the Fourier transforms are defined as

ψ̃(k,�) =
∫ ∞

−∞
ψ(w,�) eikw dw, μ̃t (k, z) =

∫ ∞

−∞
μt(y, z) eiky dy. (11)

Thus, the two-dimensional integral equation (6) has been reduced to the one-dimensional
integral equation (10), which is parametrized by the Fourier variable k.

The integral equation (10) can be solved analytically. To this end, we must specify
the functions η(�, �) and ζ(�, �). For the specific geometry of the broken rays shown in
figure 1(a), we have

η(�, �) =
{

0, � < L1(�)

[� − L1(�)] sin θ, L1(�) < � < L1(�) + L2(�)
, (12a)

ζ(�, �) =
{
�, � < L1(�)

L1(�) + [� − L1(�)] cos θ, L1(�) < � < L1(�) + L2(�)
. (12b)

Upon substitution of these expressions into (10), we obtain∫ L1(�)

0
μ̃t (k, �) d� +

eikL1(�) tan θ

cos θ

∫ L

L1(�)

μ̃t (k, �) e−ik� tan θ d� = ψ̃(k,�). (13)

We can now use the degree of freedom associated with the variable � to invert (13) for any
fixed value of k. To simplify the calculations, we introduce the notation

q ≡ k tan θ, (14a)

λ ≡ cot(θ/2), c ≡ cos θ, κ = c

1 − c
= cot(θ/2) cot θ, (14b)

f (z) ≡ μ̃(q cot θ, z), F (z) ≡ ψ̃(q cot θ, (L − z) tan θ). (14c)

4



Inverse Problems 27 (2011) 025002 L Florescu et al

The dependence of f (z) and F(z) on q is implied. Equation (13) thus takes the form∫ z

0
f (�) d� +

1

c
eiqz

∫ L

z

e−iq�f (�) d� = F(z), 0 � z � L. (15)

In this equation, F(z) is known and f (z) must be found. To solve (15) for a fixed value of q,
we differentiate once with respect to z and obtain the following result:

− 1

κ
f (z) +

iq

c
eiqz

∫ L

z

e−iq�f (�) d� = F ′(z), (16)

where the prime denotes differentiation. We then use (15) and (16) to construct the linear
combination G(z) = F ′(z) − iqF(z) in terms of f (z). We thus have

− 1

κ
f (z) − iq

∫ z

0
f (�) d� = G(z). (17)

Differentiating one more time with respect to z, we obtain the ordinary differential equation

f ′(z) + iκqf (z) = −κG′(z), (18)

which has the solution

f (z) = e−iκqz

[
f (0) − κ

∫ z

0
eiκq�G′(�) d�

]
. (19)

We then set z = 0 in (17) and find that f (0) = −κG(0). Substituting this result into (19) and
integrating once by parts, we arrive at the solution to equation (15):

f (z) = −κ

[
G(z) − iκq e−iκqz

∫ z

0
eiκq�G(�) d�

]
. (20)

An important remark on the above result is necessary. The function F(z) in (15) is not
arbitrary, but obeys the condition

F(L) = e−iκqL

[
cF (0) + iκq

∫ L

0
eiκq�F (�) d�

]
, (21)

which can be verified by direct calculation. However, measurements from experiments in
which the single-scattering approximation does not hold may result in a function F(z) that
does not satisfy this condition. On the other hand, (20) is invariant under addition to F(z) of a
function of the form a exp(iqz), where a is an arbitrary constant. It can be easily seen that any
function F(z) can be uniquely written in the form F(z) = Freg(z) + a exp(iqz), where Freg(z)

satisfies condition (21). Thus, the inversion formula (20) implicitly involves regularization of
the data.

Restoring the original notation, we find that the solution to (13) is given by

μ̃t (k, z) = λ

[
H(k, z) − ikλ e−ikλz

∫ z

0
eiλk�H(k, �) d�

]
, (22)

where

H(k, z) ≡
(

∂

∂�
+ ik

)
ψ̃(k,�)

∣∣∣∣
�=(L−z) tan θ

. (23)

Next, we apply the inverse Fourier transform and obtain

μt(y, z) =
∫ ∞

−∞
μ̃t (k, z) e−iky dk

2π
, (24)

5
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which yields

μt(y, z) = λ

{[
∂

∂�
− (1 + κ)

∂

∂y

]
ψ(y,�) + κ

∂

∂y
ψ(y + λz,�max)

− κ(1 + κ)
∂2

∂y2

∫ �max

�

ψ(y + κ(� − �), �) d�

}∣∣∣∣
�=(L−z) tan θ

. (25)

The above result is the required inversion formula for the broken-ray Radon transform. We note
that it is the analog of the filtered backprojection formula for the inverse of the two-dimensional
Radon transform.

3.2. Spatially nonuniform scattering

Simultaneous reconstruction of the scattering and absorption coefficients can be performed
without making use of the entire space of positions and directions which is available in
SSOT. It is sufficient, for example, to use normally incident sources and two different angles
of detection for each source. A special case of this measurement scheme is illustrated in
figure 1(b), where the two broken rays are assumed to have a common vertex at the point R
and are denoted by BRa and BRb. The corresponding data functions are denoted by φa(y1, y2)

and φb(y1, y2).
We begin the derivation of the inversion formula by eliminating the logarithmic term in

(3), which is done by taking a differential measurement. The differential data function is
defined as

φd(y1, y2) = φa(y1, y2) − φb(y1, y2). (26)

It is easy to see that φd(y1, y2) can be used to reconstruct μt(y, z) even when the scattering
coefficient of the medium is spatially nonuniform. Indeed, because the a- and b-broken rays
have the same vertex, we have∫

BRa(y1,y2)

μt (y(�), z(�)) d� −
∫

BRb(y1,y2)

μt (y(�), z(�)) d� = φd(y1, y2). (27)

The inversion of (27) can be carried out by employing the Fourier transform. We make the
change of variables (7) and define the new data function as ψd(w,�) ≡ φd(w,w + �). The
Fourier slice theorem then takes the form

−2i
∫ L1(�)+L2(�)

L1(�)

sin (kη(�, �))μ̃t (k, ζ(�, �)) d� = ψ̃d(k,�), (28)

where η(�, �) and ζ(�, �) are given by (12). Using these expressions and making an
appropriate change of the integration variable, (28) can be rewritten as

− 2i

cos θ

∫ L

L1(�)

sin (k(� − L1(�)) tan θ)μ̃t (k, �) d� = ψ̃d(k,�). (29)

To solve for μ̃t (k, z), we use the change of variables z = L1(�) (equivalently, � =
(L − z) tan θ ) and differentiate twice with respect to z. This yields

μ̃t (k, z) = sin θ

2

(
− 1

ik

∂2

∂�2
+ ik

)
ψ̃d(k,�)

∣∣∣∣
�=(L−z) tan θ

. (30)

The function μt(y, z) is then obtained by inverse Fourier transformation. The final result is

μt(y, z) = sin θ

4

[
∂2

∂�2

∫ ∞

−∞
sgn(y − w)ψd(w,�) dw − 2

∂

∂y
ψd(y,�)

]∣∣∣∣
�=(L−z) tan θ

. (31)

6
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In the above equation, sgn(x) denotes the sign of x and it is assumed that the data function
ψd(w,�) vanishes for |w| > wmax > 0, so that the integral on the right-hand side of (31)
converges.

Once μt(y, z) is determined, μs(y, z) can be obtained directly from (3), where one of the
two rays (either the a-type or the b-type) is employed. Finally, the absorption coefficient is
obtained from the formula μa(y, z) = μt(y, z) − μs(y, z).

4. Numerical simulations

In this section, we illustrate the use of the inversion formulas with numerical examples. For
the case of a constant scattering coefficient, we will use the Fourier-space formulas (22), (23)
followed by the inverse Fourier transform (24) to reconstruct the total attenuation coefficient
μt(y, z). For the case of a spatially varying scattering coefficient, the real-space formula (31)
will be used to reconstruct μt(y, z) and the result will then be used to reconstruct μs and μa .
In all cases, the reconstructions are carried out in a rectangular area 0 � z � L, 0 � y � 3L

and the detection angle is set to θ = π/4, so that �max = L.
In what follows, the optical coefficients are decomposed as

μt(y, z) = μ̄t + δμt (y, z), μs(y, z) = μ̄s + δμs(y, z), μa(y, z) = μ̄a + δμa(y, z),

(32)

where quantities with an overbar are constant background values of the coefficients. In
performing a reconstruction, it will be assumed that the support of the functions δμa(y, z)

and δμs(y, z) is contained in the rectangular area where the image is reconstructed. This
assumption is violated if Gaussian inhomogeneities are used, as will be done below. However,
the resulting error is exponentially small.

4.1. Spatially uniform scattering

We consider first the case of a medium with δμs = 0 and a spatially varying attenuation
coefficient that is supported in a square domain:

δμt (y, z) =
{
μ̄t , |y − y0| � a/2 and |z − z0| � a/2
0, otherwise

. (33)

Thus, the attenuation coefficient inside the square is twice the background value of μ̄t .
The square is centered so that y0 = L, z0 = L/2 and its side length is a = L/2. The
Fourier-space data function ψ̃(k,�) was obtained analytically from (22) by direct integration.
Then the variables � and k were sampled and μt(y, z) was reconstructed using discrete
samples of ψ̃(k,�). More specifically, the samples have been used to evaluate numerically
equations (22) and (24). The variable � was sampled as �n = hn, where n = 0, 1, . . . , N

and h = �max/N . Note that for θ = π/4, �max = L. The Fourier variable k was sampled
in the interval [−π/h, π/h] according to km = (π/h)(m/N − 1), where m = 0, 1, . . . , 2N .
The derivative in (23) was computed as the central difference

∂ψ̃(k,�)

∂�

∣∣∣∣
�=�n

= ψ̃(k,�n+1) − ψ̃(k,�n−1)

2h
, n = 0, 1, . . . , N. (34)

In applying the above formula, the boundary condition ψ̃(k,�−1) = ψ̃(k,�N+1) has been
used. Note that the substitution � → (L − z) tan θ contained in the formula (23) did
not require any resampling because, in the geometry used, tan θ = 1. More generally,
however, resampling and interpolation is required to apply (23) to a uniformly sampled

7
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Model N = 40 N = 400

Figure 2. Reconstructed δμt (y, z) for the square inhomogeneity (33) using different numbers of
samples N, as labeled.

function ψ̃(k,�). The integral over � in (22) was evaluated numerically using the trapezoidal
rule. Finally, the image was reconstructed on a rectangular grid with the same step size as was
used to sample the variable �, that is, h. Reconstructions of the total attenuation coefficient
μt(y, z), obtained as described above, are shown in figure 2 for two different values of the
parameter N. It can be seen that the reconstruction contains artifacts. When the number of
samples, N, is increased by a factor of 10, the support of the artifacts is reduced by the same
factor, but the amplitude is unchanged. We have verified that the L2 norm of the discrepancy
ξ(y, z) = μ

(true)
t (y, z) − μ

(reconstructed)
t (y, z) tends to zero when N → ∞, yet the maximum

amplitude of the relative error, max[ξ(y, z)/μ
(true)
t (y, z)], remains of the order of unity.

The relatively low image quality seen in figure 2 is due the jump discontinuity of δμt .
This statement is confirmed by considering a smooth inhomogeneity in which the attenuation
coefficient is a Gaussian function of the form

δμt (y, z) = μ̄t exp

[
− (y − y0)

2 + (z − z0)
2

σ 2

]
. (35)

The corresponding Fourier-transformed data function, ψ̃(k,�), can be computed analytically.
We have used the same sampling procedure as above and an image was reconstructed using
equations (22)–(24). The results are shown in figures 3 and 4 where it can be seen that an
accurate quantitative reconstruction is obtained. When a linear scale is used to represent
the data, no artifacts are visible in the reconstructions and the reconstructed data coincide
quantitatively with the model. However, when a logarithmic scale is used on the vertical axis,
as is shown in panels (b), (d) of figure 4, the artifacts become clearly visible. The amplitude
of the artifacts in the transverse cross section of the image (figure 4(b)) is, in fact, less than
2% of the plot maximum.

8
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σ = 9h σ = 15h σ = 21h σ = 30h

Figure 3. Reconstructed δμt (y, z) for the Gaussian inhomogeneity (35) using N = 120 and
different values of σ , as labeled.

4.2. Spatially nonuniform scattering

We next consider the case when both the scattering and the absorption coefficients of the
medium are spatially varying. We have modeled the inhomogeneities as Gaussian functions:

δμs,a(y, z) = μ̄s,a exp

[
− (y − ys,a)

2 + (z − zs,a)
2

σ 2

]
, (36)

where (ys, zs) and (ya, za) are the centers of the scattering and the absorbing inhomogeneities.
Note that the amplitude of each coefficient in the center of an inhomogeneity is twice the
background value. Both types of inhomogeneity are present in the medium simultaneously but
not overlap. Thus, the scattering inhomogeneity was centered at the point (ys = 3.125L, zs =
0.5L) and the absorbing inhomogeneity was centered at (ya = 0.875L, za = 0.5L). We have
considered different values of the parameter σ . However, in each reconstruction, σ was the
same for the absorbing and the scattering inhomogeneities.

In this subsection, we have used the real-space image inversion formula (31). The data
function was obtained by analytical integration and the image reconstruction was performed
by sampling the variables w and � in the data function ψd(w,�) on a rectangular grid with
step size h, as described in more detail in the previous subsection. For the reconstructions of
this subsection, N = 120 and h = L/N . The derivatives in (31) were computed by central
differences and the integral by the trapezoidal rule.

We consider below two cases. The first case corresponds to μ̄sL = 2.4 and μ̄aL = 0.24.
The challenge here is to reconstruct the absorbing inhomogeneities in the presence of much
stronger scattering inhomogeneities. In the second case, μ̄sL = μ̄aL = 2.4, so that the
strength of the absorbing and the scattering inhomogeneities is the same. Image reconstruction
for the first case is illustrated in figures 5 and 6. Here we plot the total coefficients (including
the background) rather than the fluctuating parts δμt , etc., as was done in figures 2–4. It can
be seen that quantitative agreement with the model is obtained for both the scattering and the

9
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σ = 9h
σ = 15h
σ = 21h
σ = 30h

(a)

δμt/μ̄t

y/L 3210

1.2

0.8

0.4

0

(b)

δμt/μ̄t

y/L

1

10−4

10−8

10−12

3210

(c)

δμt/μ̄t

z/L 10.50

1.2

0.8

0.4

0

(d)

δμt/μ̄t

z/L

1

10−4

10−8

10.50

Figure 4. The data of figure 3 are shown here as cross sections along lines drawn through the
center of the inhomogeneity in the directions parallel to the y-axis (a), (b) and to the z-axis (c),
(d). The panels (a), (c) use a linear scale and the panels (b), (d) use a logarithmic scale for the
vertical axis. Dots represent the reconstructed values and the model function is represented by the
dashed lines. Every other reconstructed data point is shown in the semi-logarithmic plots. Some
of the data points are not shown in the semi-logarithmic plots because their values are negative or
too small to be displayed.

attenuation coefficients. We note that the accuracy of the reconstructed absorption coefficient
is not as good as the scattering coefficient. This is because the relatively small quantity μa

was obtained by finding the numerical difference between the two much larger quantities μt

and μs . In the case when the magnitudes of the scattering and the absorbing inhomogeneities
are the same, a quantitatively accurate reconstruction of all three coefficients is obtained, as is
illustrated in figures 7 and 8.

5. Discussion

In conclusion, we have derived inversion formulas for the broken-ray Radon transform. The
results we have obtained are analogous to the filtered backprojection formula for inversion of
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Figure 5. Simultaneous reconstruction of the absorption and scattering coefficients for the case
μ̄sL = 2.4, μ̄aL = 0.24L. The three columns represent the attenuation, scattering and absorption
coefficients, as labeled. The letter ‘M’ indicates ‘model’ and the letter ‘R’ indicates reconstruction.
The first two rows correspond to σ = 21h, the next two rows correspond to σ = 9h and the last
two rows correspond to σ = 3h. Here h = L/N and N = 120. Each plot is normalized to its own
maximum.
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Figure 6. The data of figure 5 for the case σ = 21h (h = L/N and N = 120) are shown here as
cross sections along the straight line z = za = zs , which intersects the centers of the absorbing and
the scattering inhomogeneities. The total attenuation and scattering coefficients are shown in panel
(a) and the absorption is shown in panel (b). Centered symbols correspond to the reconstructed
values and the dashed lines correspond to the model.

the two-dimensional Radon transform. Numerical simulations were conducted to illustrate
the method in model systems.

We conclude with several remarks. (i) Imaging with ballistic photons allows only for the
recovery of the attenuation coefficient μt = μa + μs . In contrast, inversion of the broken-
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Figure 7. As in figure 5 but μ̄sL = μ̄aL = 2.4.
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Figure 8. As in figure 6 but μ̄sL = μ̄aL = 2.4.

ray transform in SSOT allows for separate reconstructions of the absorption and scattering
coefficients. (ii) Inversion of the broken-ray transform is mildly ill-posed [6]. The ill-
posedness strongly affects image reconstruction when the inhomogeneity has singularities. We
conjecture that the ill-posedness can be regularized by making use of additional measurements.
(iii) It is well known that the filtered backprojection inversion formula for the Radon transform
produces blurry images for the case of limited-angle data. In particular, one can stably
reconstruct only singularities that can be tangentially touched by the integration paths, while
all the other singularities are blurred. We note that an analogous effect is not observed in
figure 2, where the reconstructions are of high quality even for jump discontinuities that are
not parallel to the paths of the broken rays. It would thus be of interest to study the propagation
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of singularities for the broken-ray Radon transform. Related theoretical questions concern
mapping properties and range conditions of the transform. We plan to investigate these topics
in future work. (iv) Since the Radon transform is a special case of the broken-ray Radon
transform, it may be of interest to investigate imaging modalities that make use of ballistic-
and single-scattered photons simultaneously. This will be the subject of future work. (v) In
gamma-ray emission tomography the physical mechanism of image formation is related to
single Compton scattering of gamma rays. It has been shown that the problem of reconstructing
the density of the source of gamma rays is related to inverting the so-called V transform [3].
The V transform is a special case of the broken-ray transform in which the position of the
source and the orientation of the detector are varied. A generalized filtered backprojection
inversion formula for the V transform has recently been reported [8].
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