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Fractals., introduced by Benoit Mandelbrot, are scale self-similar
mathematical objects possessing nontrivial geometrical properties
[1.2]. There exist various physical realizations of fractals [3.4] and
here we =shall consider one of the most important such realizations,
namely, fractal clusters. A fractal cluster is a system of interacting
material particles called monomers. This system is self-similar (in
statistical sense) with respect to scale transformation in an inter-
mediate region of sizes r, RD« r « RC. where Ro is a characteristic
separation between monomers and RC is the cluster total size. A con-
sequence of this is the scaling behavior in the intermediate region of
the pair correlation function (density-density) g(r)., the number N of
monomers in a cluster and its mean density 5:

g(r) = ‘: 3[;—]I"B : N~ [RC/RD]D; = (RC/RO]D'a ‘ (1)
B~ Rp
where index D is the fractal dimension.

The linear optical (dipole) polarizabilities of fractals have been
studied theoretically [5-8]. However, in [5-B]. based on various mod-

ifications of the mean-field method. strong fluctuations in fractals
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are not completely taken into account. In later papers [7.8] fluctua-
tions play a decisive role. There the binary approximation was em-
ployed: the interaction of a monomer only with its nearest neighbor
was accurately taken into aécount. while the effect of other monomers
was simulated by the Lorentz field. Here we shell develop a theory of
optical properties of fractals, taking full account of their fluctua-
tion nature without the restriction of binary approximation.

Let us consider a model of cluster as a system consisting of N
polarizable particles (monomers) located at the points :i‘ The total
size of the cluster is supposed to be much less then the wavelength.
The dipole moments 35 induced on monomers obey the well-known system
of equations:

4 o)

SR AE L = XoLjptialWiisd (2)
where the Greek subscripts stand for tensor components and the Latin
indices stand for ordinal numbers of monomers, Xg is thf(j:near di-
polar polarizability of an individual (isolated) monomer, E is the
electric field of the external radiation and (ix|W|j) is the dipo-

lar interaction matrix:

Cia|Wl§m = (1 - 65308, - an;i'j’n’;"‘i}] ;3 (3)
- - - -o‘-‘j, -+ y } “
Here rij‘ ri-rj and n = rij/rij' The matrix W operates in 3N-dimen-

tional space of the wvectors d and E with components (iala)-dja "
(iulE)-EDt and the basic system of eguations may be written in the
form:
(z + W)d = E = (4)
where the complex variable z = —(X+i&) = xal i8 introduced.
Let us look at the dependence of X and & on frequency » for the
particular case of an isolated resonance with freguency o e relaxa-

tion rate (homogenous width I' ) and transition dipole matrix element

d12:
o[
g = —22— ; xa 22, o= 2L (5)
f(eilr) idlzi ld12l
It is clear that in this case X is a relative detuning and & is a

relative width of the resonance in an imolated monomer.

To find the properties of the exact solution, we perform a decom—
position in terms of the eigenfunctions and eigenvalues of the opera-
for W. which also turns out to be the most powerful computing method
for carrying out our numeral simulations. Expressing the reguired

quantities dju in terms of the eigenvalues w and components of cor-
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responding eigenvectorg (n|Uli«), one obtain from (4):
) (o) ti) 3 ¥ -1
dja" Xan Eﬁ P R Enj(nIlect) (njyUljir) (z + w.) : (6)

From the form of the solution (6) the exact sum rules follow:

=] D [+0]
Tmy '’ (X)dX = 76 _ 3 Rey'®’
_i af3 off 4£ o3

It can be seen that the absorption integral is conserved; it is the

(X)dX = 0 . (7)

same as for an isolated monomer.
Let us also employ rotational symmetry. Then after averaging over
the orientation of: a cluster as a whole and over monomers in a
cluster (denoted as <...>0] the polarizability tensor is reduced to
a scalar: <x;ﬁ)>° = zﬁaﬁ
Now we obtain from (6) an exact relation which is a counterpart of
the optical theorem:
N (&)
With the aid of (8) let us find the average (over a cluster) squared
electric field Ej which acts upon a monomer. This field determines the
enhanced Raman scattering from the cluster, and also its photomodifi-
cation. The acting (local) field is coupled to the solution of the
system (4) in an obvious manner: Ej = xaizi. For definiteness let us
suppose that the external field E‘o’is directed along the z-axes. Then
from (B8) we obtain:
i o AL S 2 .2
N zilEi[ /1E = & C1 + X° /87D Inxzz 5 (9)
The above exact results didn't wuse any specificity of fractals.

(o)lz

Those results, however, will now be employed to describe the collec-
tive polarizability of fractals. Self-similarity, which is a funda-
mental property of fractality, means that a fractal reproduce itself
when the spatial scale is changed. Since in general a fractal is a
random object this reproduction has statistical meaning. A change of
length scale brings about simultaneous change of the scale of eigen-
values w. and the variable X. As a consequence of this, intermediate
asymptotic values of observed quantities as function of w and X should
be sBcalable.

tet us describe Imy(X) (absorption). From (6) we see that scaling
behavior of Imy(X) may exist only if |X|»5 . Then absorption is de-
termined by those eigenstates for which X-vn. These eigenstates are

characterized by a coherence length L, and are collective, i.e. delo-

X
calized over many monomers, in the intermediate region: RO« LX« RC.

Taking into account dimensionality arguments and provided |X|>»& we
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obtain in this region:

ImxCX) ~ Ry (anlxudo . } (10)
where d0 is an index which we call the optical spectral dimension.
From the convergency requirement it follows that do >0

Now, using a renorm-transformation, we can evaluate some trans-
formation rules for RD' X and Lx . Such renorm-transformation means
coarsing of the spatial precision with which a fractal is viewed and
is performed in the following manner: we isolate in a fractal fluctu-
ations with sizes on the scale of 10 and then we consider monomers,
which forms this fluctuations, as a new composite (renormalized) mo-
nomers with renormalized X. The renorm-transformation should conserve
the total absorption of a fractal and the coherence length LX' Thus we
obtain:

IX] o Ry TR/ L, Lyt~ Ry(RINop ¥t 17103 (11)
For D=3 (a trivial fractal) the expression for Lx is singular. This

singularity has simple physical meaning, and to see this we consider
the reciprocal of the function (11)., which is the dispersion relation
for the excitation of a fractal. For D=3 it follows from (11) that |X]
does not depend on Lx (the excitation wavelength). This fact exactly
corresponds to the dispersion law (existence of a spectral gap) of
long-wave surface plasmons to which the dipole excitation of a fractal
tends as D * 3

We now find the relation between the absorption of a fractal
Imy(X) and density of eigenstates v(X) = <z%6(x-'n)>' In a strongly
strongly disordered system such as a fractal all collective eigen-
states should with equal statistical weights contribute to the optical
absorption. Hence, as it follows from (6). sum rules for absorption
contour and provided that scaling of exists we can write:

Imy(X) = 3 vix) ~ [x%™7 . (12)
Note, that relation (12) is not exact. It is violated at the wings of
absorption contour and has a statistical sense in the collective re-
gion.

The fundamental predictions of the theory are the universal s=scal-
ing behavior of absorption (10) and relation (12). These predictions
(as well as other theoretical results) were tested by numeral simula-
tion. At Fig.l resulte of such simulation for random walks fractal
clusters (D=2) are shown. From this figure it is clear that the ab-
sorption and density of states in fact obey Eg. (10), (12) with good

accuracy. The values of optical spectral dimension were measured for
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Fig.1l.Fractal absorpti-
on as a function of X
(for X >0) on a double
logarithmic scale built
for an ensemble of
random-walks clusters
(D=2 ,number of clusters
75, average number of

monomers in & cluster
30). 1 - found from the .
exact formula (6); 2 - a5 05 : ' AT "1

expressed via the sta-
te density according te (12). The corresponding lines are obtained by
linear regression. The value X is measured in units of Ras, and x - in

units of R; . where RD is determined by (1).

G -8
1 -Imay, 70
Fig.2. Change of the 6=0.8%

fractal absorption spe-
ctra induced by photo-
modification {(the plus
sign corresponds to a
decrease of absorption):
1.2 - parallel and 3,4-
normal pelarization;
2,4 - numeral calcula-
tions via exact formula
1.3 - the analytical
result of the binary

approximation. The parameters are: Xm=—3. S5=0. 33, Ke0.25 . All
values are measured in the same units as in Fig.l. For calculations is

used the same ensemble of clusters as in Fig.1.

Dw=i.8 (smelf-avoiding random walks clusters), D=2.0 (random walks
clusters), and D=2.5 (Witten—Sander clusters). The results are cor-
respondingly do = 0.43(3), 0.38(3), 0.4%2) (from the absorption) and
do = 0.54(8>, 0.33(5), 0.51(6> (from states density). We note, that in
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all cases 0 < d0< 1, which corresponds to a normal dispersion law (11).
For a trivial fractal no scaling behavior is observed. Alsc we con-
clude that do is close tq 0.5 for the studied fractals and no depen-
dence on D is observed (with the accuracy we had in our numeral simu-
lation).

The scaling behavior of the density of fractal eigenstates as a
function of freguency was introduced by Alexander and Orbach [9] for
the problem of mechanical vibrations of fractals ("fractons")., where
index 4, corresponding to do ., was called the spectral (fracton)
dimension. In general case the value of tha spectral dimension depends
on the internal fractal geometry and also on the interaction between
monomers. Thus the value of do shold not necessarily coinside with
d in Ref. [9}.

We now proceed to a numeral simulation of the threshold selective
photomodification of fractals. We shall suppose the modification to be
local: a given monomer is modified (evaporated, or, actually, deleted
from a fractal) if the intensity of the local field exceeds a thresh-
old Im =const : Ii.lEi|z>Im' For the modifying radiation we take the
following parameters: x-xm, K-I/Ith-l >0 (Ith is threshold intensity
of the modifying radiation for which the modification starts and is

coupled with Im by the amplification factor G: I -Im/G ). and linear

polarization parallel to the =z-axis. The modif;ggtjon condition was
computed according to the exact sclution (6). Those monomers for which
this condition was met were removed from the fractal. After that the
absorption spectra of the modified fractal were numerally determined
for the parallel (z) and normal (xy) polarizations of the probe
radiation. Finally the ensemble averaging was performed.

The results of this numeral simulation (differential spectra) are
performed at Fig.2. Here we see that the photomodification is spectral
and polarization-selective in agreement with experiment [10]. At Fig.2
a dashed line is also shown which displays the results of the theo-
retical calculation of differential spectra performed in binary ap-
proximation. Good agreement shows us that the photomodification at
wings of the absorption contour has a binary nature (pairs which fit
resonance condition are burned). For binary spectra look [7.8]. The bi-
nary approximation also makes it clear why we have two different picks
for parallel and normal polarization of the probe radiation. This is a
property of an absorption contour of a pair of monomers. HNamely. for
the =z-polarization of the probe field the spectral hole is positioned

at the modification freguency (X=Im). and in the case of xy-polariza-
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tion the hole is centered about the "mirror" frequency ( X = -xm/2 for
X <0 and X = =2X_ for X >0 ).
m m m

1

N
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The more detailed results are going to be published in PHYS.REV.B.
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