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ABSTRACT

Optical prossesses in nanostructured fractal composites are shown to be strongly enhanced. The
enhancement occurs because of a localization of dipolar eigenmodes in subwavelength areas.

Composite materials constituted of tens-of-nanometer-sized particles possess fascinating elec-
tromagnetic properties and they are likely to become ever more important with the miniaturization
of electronic components. Fractal structures are very prevelant in composites. The emergence
of fractal geometry was a significant breakthrough in the description of irregularity [1]. Fractal
objects (fractals) do not possess translational invariance and, therefore, cannot transmit ordinary
waves [2,3]. Accordingly, dynamical excitations such as vibrational modes, known as fractons,
tend to be localized in fractals [3]. Formally, this is a consequence of the fact that plane running
waves are not eigenfunctions of the operator of dilatation symmetry (scale-invariance) character-
izing fractals. The efficiency of fractal structures in damping running waves is probably the key
to a “self-stabilization” of many of the fractals found in nature {2}.

The localization of optical eigenmodes can lead to a dramatic enhancement of many optical
effects in fractals [4-6]. The theory of optical excitations in fractal clusters and percolation systems
has been intensively developing during the last decade, in particular, by Berry [7], Stroud [8],
Bergman [9], Fuchs and Claro [10], Devaty [11], Brouers [12], Niklasson [13], and by Stockman,
Markel and Shalaev [4-6, 14-23]. One of the most fascinating optical properties of fractals is
a strong localization (in regions smaller than the wavelength )) of the dipolar eigenmodes [6,
8, 12, 14-17, 24]). Localized modes concentrate electromagnetic energy in areas smaller than
the diffraction limit of conventional optics (~ A) acting, to some extent, as antennas or as the
“near-field lenses”. Such modes produce high-local-field zones resulting in strong enhancement of
optical processes (especially, nonlinear ones which are proportional to the local field strengths to

a high power). In fractal aggregates composed of metal nanoparticles and in rough self-affine films
the modes are associated with localized surface plasmon (LSP) oscillations. Direct experimental

observation of the strongly localized optical modes in fractal silver aggregates has been recently
reported [24].

As shown previously [4-6, 15-23], resonant excitation of strongly localized optical modes in
fractals results in a huge enhancement of resonant Rayleigh [16], Raman [18] and, especially,
nonlinear light scattering [21-23]. We have also predicted recently that, in addition to localization
of light-induced dipole excitations, fractality can result in Anderson localization (trapping) of the
light itself within a range of the order of a wavelength [19].

An important property of the interaction of light with fractals is the very strong frequency and
polarization dependence of the spatial location of light-induced dipole modes [6, 22, 24]. Such
frequency-spatial and polarization-spatial selectivity of the interaction can find applications in
the recording and processing of optical information. This selectivity arises because the fractal
morphology provides localization of optical modes on different sections of an object with random
local structure and because of the tensor character of the dipole (or, multipole, in a general case)
interactions between particles forming the fractal object.

A well-known example of a fractal aggregate of particles is a metal colloid cluster. In particular,
fractal aggregates of silver colloid particles can be produced from a silver sol generated by reducing
silver nitrate with sodium borohydride. Addition of an adsorbate (e.g., phthalazine) promotes
aggregation and fractal colloid clusters form. This aggregation can be described as follows. A large
number of initially isolated silver nanoparticles execute random walks in the solution. Encounters
with other nanoparticles result in their sticking together, first to form small groups, which then
aggregate into larger formations, and so on. This is the so called cluster-cluster aggregation model,
which results in clusters having fractal dimension D =~ 1.78. Cluster-cluster aggregation can be
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easily modeled in a computer, which provides excellent simulation of the empirically observed
structures.

The number of particles, N, in a fractal aggregate is given by N = (R./Ro)P, where R, is
the radius of gyration of the cluster and Ry is a typical separation between neighbor monomers.
For silver colloid fractal clusters one typically has Ry ~ 10nm, R, ~ 1um and D = 1.78. Note
that each section of a fractal composite contains holes comparable in size to the section itself.
Such a structure is statistically self-similar, i.e., it posseses a scale-invariance property. The
positions of particles in a cluster are correlated so that the pair correlation function has a power-
law dependence: g(r) o« rP~¢, where d is the dimension of the embedding space (d = 3 in the
case under consideration). The mean density of a fractal cluster p ~ N/R% & RP~% — 0 when
R, — oo since D < d. Thus, the larger a fractal cluster, the smaller its mean density. This is
because holes in a fractal composite are presented in all scales from the minimum (~ Rp) to the
maximum (~ R.).

Metallic particles constituting a nanocomposite are polarizable and possess an optical reso-

nance with high quality-factor Q : @ > 1. This resonance is associated with plasmon oscillations
within the spherical particles. Light-induced dipole-dipole interactions between the polarizable

particles in the aggregate are determined by the complex polarizability xo of an isolated monomer.
For a spherical monomer (in vacuum) xo = R3,(e - 1)/(¢ +2), where R, is the monomer radius,
and € = €'+ie” is the dielectric constant of the metal. Defining X = —Re[x;"], and § = —Im[x;"],
X plays the role of a spectral variable and § expresses the dielectric losses. At the resonant fre-
quency wo one has €'(wp) = —2 and X(wp) = 0. In the vicinity of the localized surface plasmon
(LSP) resonance, X & w — wp where w is the frequency of light. The quality factor is determined
by Q = (R38)™" = (Ro/Rm)’le = 1]/3€" ~ |e — 1]/3¢".

An external optical field induces transitional dipole moments on the particles, and strong
dipole interactions lead to a renormalization of the problem, from one of N dipoles in a cluster to
one of 3N collective dipolar eigenmodes. These modes in the case of silver fractal nanocomposites
cover a wide spectral range, from approximately 340 nm to 1000 nm, i.e., the visible and near-
infrared parts of the spectrum. Thus, while the LSP resonance of an isolated silver particle peaks
(in water) at 400 nm, a fractal nanostuctured aggregate resonates at an almost continuous set
of frequencies in a broad spectral range and, accordingly, can provide enhancement at all these
frequencies. These resonances are shifted mostly to the red-wavelenght part of the spectrum
where the quality-factor  for metal nanocomposites is significantly larger than that at the near
uv resonance of an isolated spherical particle. (For silver, @ ~ 10 at the uv resonance of an
isolated particle, and Q ~ 102 at the collective plasmon resonances of a fractal nanocomposite in
the visible and ir ranges [18]).
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Fig. 1: Extinction spectrum of silver colloid fractal aggregates
(dashed lines - experiment; cirlces and solid lines - simulations).
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In Fig. 1 we present the results of our numerical simulations of the extinction spectrum of
isolated silver monomers and their fractal aggregates compared with experimental data. Clearly,
the aggregation results in a large tail in the red and near infra-red part of the spectrum. In the
case of fractal composites the simulations have been performed for 10 clusters of 500 particles each
(the solid line with a large wing) and for 4 clusters of 10,000 partiles each (circles). As follows
from the figure the simulations discribe well the experimental data in the wing of the absorption
spectrum asocciated with localized optical modes of fractal nanocomposites. The discreapancy
in the central part of the spectrum (which is mostly due to delocalized modes) occurs because in
the experiments a number of particles remained nonaggregated in solution and led to additional
(not related to fractal aggregates) absorption at 400 nm.

The strong localization of the eigenmodes results in accumulation of electromagnetic energy in
areas smaller than the wavelength. These “hot zones” are characterized by very high local fields.
Note that these local fields are strongly fluctuating in space so that (| Ejoe|2) > (| Eioc|)? {6, 14]
({...) denotes averaging over the ensemble of clusters).

The localization of the eigenmodes is characterized by a coherence length Lx of the eigenmodes
defined by [14, 17]

12 _ (Ta8(X - wi){Tiia | n)r? — [Tyia | nPA]%))
x (T, 8(X — wn))

where (ia|n) and wy, are the eigenfunctions and eigenvalues of the dipole-dipole interaction oper-
ator, W, between particles in a cluster. This definition has a clear quantum-mechanical analogy
with (ia | n) as the wave function. In Fig. 2 we plot Lx against X. According to the figure, the
localization increases for larger values of | X}, i.e., for larger detuning from the resonance of an
isolated particle given by X = 0. The most localized modes have linear dimensions which are of
the order of the particle size.

The increase of the localization with increasing |X| leads to the higher local intensity associ-
ated with the modes and, as a result, to larger enhancements. As shown in previous papers, the
enhancement of optical processes, such as Raman scattering and DWFM, significantly increases
towards larger values of | X| [6, 18, 23]. Note also that fluctuations are very strong and increase
toward the center X = 0. These are long-range fluctuations near the critical point, X = 0,

which ultimately provide the scaling of optical excitations similar to a phase transition [14, 15].
Thus, the point X = 0 plays a role similar to the phase transition point in phase transition theory.
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Figure 2: The localization length Lx of eigenmodes versus their eigenvalue a®X for the
cluster-cluster aggregate, CCA, with N = 500 particles. (The diameter of a particle, a, is equal
to unity). The dependence Lx averaged over an interval of a3AX = 0.02 for ten CCAs is shown

by the solid line.
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The property of fractal nanocomposites to produce high-field areas can be utilized for con-
troling some optical characteristics, such as light absorption and scattering, of various optical
materials. This can be achieved by adding into a material a certain amount of metal nanocom-
posites and thereby improving its optical sensitivity. The same property is of importance in high
resolution spectroscopy also and, especially, in the nonlinear case. The huge enhancement of a
number of linear and nonlinear optical effects observed in metal colloid clusters and on rough
surfaces is in a large part due to the high-field zones.

As already mentioned, spatial locations of the regions of high local field strongly depend on the
frequency and polarization of light. The ability to distinguish optical frequencies and polarizations
is one of the most interesting, and potentially useful, properties of fractal nanocomposites. We
envision applications in optical signal processing and optical data storage based on this unique
property. For example, one may wish to demultiplex, i.e., to spatially separate and detect, a
set of optical communication channels which are distinct from each other only by their carrier
frequency. Another possibility, in the realm of optical data storages, is to photomodify the
absorption spectrum of a small region of a cluster, thereby creating a frequency- or polarization-
addressable optical data bit. Our preliminary experiments on frequency- and polarization-selective
photomodification of fractal clusters [22] support these expectations.

It is worth comparing fractal nanocompsites with other inhomogeneous media and, specifically,
with a medium having the same volume fraction of metal particles which, however, are randomly
distributed in a three-dimensional space. This is, of course, different from a fractal nanocomposite
where the positions of particles are correlated, so that g(r) o« P-4 with D < d. The volume
fraction p of particles in a fractal cluster is very small, p « 1, (in fact, p — 0 at R, — 00). For
a random inhomogeneous media with p < 1 and D = d (we refer it as “gas” of particles), one
can apply the well-known Maxwell-Garnett theory [9] which predicts only one resonant frequency
close to the resonance of an isolated particle at X(w) = 0. In fractals, however, in spite of the
fact that the mean density is asymptotically zero, there is a high probability of ﬁnding a number
of particles close to any particular one. (The pair correlation finction, g(r) « rP~9, increases
with the decrease of a distance r between the particles). Thus, in fractals there is always a
strong interaction of a particle with others distributed in its random neighborhood. As a result,
there exist localized eigenmodes which are oriented spatially in different parts of a cluster, with
the location depending on the eigenfrequency and polarization characteristics of the mode. As
mentioned above, some of these modes are significantly shifted to the red part of the spectrum and
therefore their quality factors are much larger than at X(w) = 0, for a non-interacting particle.
(As follows from the Drude formula, @ o A in the infrared part of the spectrum [18]). Thus, the
dipole-dipole interaction of particles composed into a fractal cluster “generates” a wide spectral
range of resonant modes with improved quality-factors and with spatial locations which are very
sensitive to the frequency and polarization of the excited field.

The other medium with which to compare fractal composites is a close-packed 3-dimensional
aggregate of metal nanoparticles (the volume fraction occupied by metal particles in this case is
p ~ 1). Since the dipole-dipole interaction for 3-dimensional structures is long-range, one expects
that eigenmodes in this case are delocalized over the whole sample. Accordingly, fluctuations of
local fields ( 1/+/N) are much smaller than in the case of localized dipolar modes in a fractal
aggregate. Because the strong fluctuations of local fields are primarily responsible for high values
of optical nonlinear response, the nonlinear susceptibilities of a random close-packed aggregate
are significantly smaller than those of a fractal aggregate. Thus in both considered cases of non-
fractal composites, a “gas” of particles and a close-packed aggregate, the enhancement of optical
processes is expected to be much smaller than for a fractal nanocomposite.

In Fig. 3, we present the results of numerical simulations for the enhancement of local field
intensities, G = {E?)/(E©®)? (E and E©® are the local random field and the external driving
field, respectively). Clearly, the enhancement of local fields in fractal composites (cluster-cluster
aggregates, CCA) achieves much larger values than for the case of non-fractal silver composites
(either a “gas” of silver particles with the same, as in the CCA, p or a close-packed random
aggregate of silver spherules). Note also that for fractal composites G strongly increases with
increasing wavelngth A. This occurs because of two basic reasons: first, localization of eigenmodes
in fractals increases with A and, second, the mode quality-factor (@ ~ |e — 1|2/3¢€") also increases
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for the eigenmodes located towards the red part of the spectrum.

1003 G

107

A, nm
200 400 600 800 1000 1200

0.1

Fig. 3: Enhancement factors, G, of the local field intensities plotted against A for the fractal
composite (solid line), "gas” of particles with the same as for the fractal aggregate volume
fraction of metal (short-dashed line), and the close-packed aggregate of particles (long-dashed
line). The local intensites in all cases were averaged over ensemble of random aggregates with
N = 500 in each cluster.

Clearly, the enhancement of nonlinear optical processes will be especially strong since the gen-
erated intensity in this case is proportional to a high power of the local field. The enhancement
factor G for an optical process o« E™ can be estimated as [7]: G ~ (|E/EOQ|™) ~ [Q(AN)]*~1F(}),
where F()) is a smooth function of the wavelength which is of the order of unity. In partic-
ular, for degenerate four-wave mixing, DFWM, (when the generated amplitude is enhanced as
well as the driving field) the theory predicts the giant enhancement G o« @Q° [23). The non-

linear polarization Py, for DFWM of waves with amplitudes E(©) and Efo) can be presented as

Pnp = pxgg. [E(O)PEEO)' where xﬁ% = x(3)G1/2 i5 the effective nonlinear susceptibility of a fractal
composite (x(® is the nonlinear susceptibility of nonaggregated particles).
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Fig. 4: a) DFWM efficiency vs pump intensity for silver particles which are isolated (1) and
aggregated into fractal composites (2) (A = 532 nm); b) DFWM signal vs the time delay of one
of the pumps (A = 540 nm; pulse duration is 7 ~ 30ps). Taken from [21] and [22].
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In Fig. 4a we plot the experimental data for conversion efficiency n = I,/I; « IZ (I,
and Ip are the intensities of the DFWM signal, probe beam and pump beam, respectively).
The conventional scheme for observation of optical phase conjugation (OPC), with two opositely
directed pump beams and a probe beam directed at small angle with respect to the pumps, was
used in the experiment. As follows from the figure, similar values of 7 can be obtained in silver
particles aggregated into fractals at pump intensities ~ 103 less than in the case of non-aggrega.ted
isolated, particles. Since 5 I3 the enhancement factor for sxlver fra.cta.l composites is G ~ 10°.

The measured value of the nonlinear susceptibility is very large x (—w w,w; —w) ~ 1075 e.s.u.

Rapid nonlinear response of fractal nanocomposites was tested in the OPC scheme when one
of the input pulses was delayed by moving the mirror that reflected the input beam back to the
sample. As follows from Fig. 4b the DFWM signal is twice decreased with the time delay 74
increasing up to 30 ps, which coincides with the pulse duration. Hence, the relaxation time of the

nonlinear response does not exceed 10~! 5. Such a large nonlinear susceptibility x( ) ~ 10-5¢.5.u
with the time of nonlinear response < 30ps is, to our knowledge, a world record and it indicates
that fractal metal nanocomposites possess high potential in various applications (e.g., as optical

switches).
REFERENCES

[1] B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Fransisco, 1982).

[2] B. Sapoval, Fractals (Aditech, Paris, 1990).

[3] Fractals & Disorder, Editor: Armin Bunde, (North-Holland, 1992); S. Alexander & R. Orbach,
J. Phys. (Paris) Lett. 43, L1625 (1982).

[4] V. M. Shalaev, M. L. Stockman Zh. Eksp. Teor. Fiz. 92, 509 (1987) [Sov. Phys. JETP 65,
287 (1987); Z. Phys D-Atoms, Molecules and Clusters, 10, 71 (1988).

(5] A. V. Butenko, V. M. Sha.laev, M. L. Stockman, Zh. Eksp. Teor. Fiz. 94, 107 (1988) [Sov.
Phys. JETP 67, 60 (1988)}; Z. Phys. D - Atoms, Molecules and Clusters, 10, 81 (1988).

[6] V. M. Shalaev, et al., Physica A 207, 197 (1994); Fractals 2, 201 (1994).

[7] M. V. Berry and I.C. Percival, Optica Acta 5, 577 (1986).

[8] 1. H. Zabel & D. Stroud, Phys. Rev. B 46, 8132 (1992); X. Zhang and D. Stroud, Phys. Rev.
B 48, 6658 (1993); X. Zhang and D. Stroud, Phys. Rev. B 49, 944 (1994); P. M. Hui, D. Stroud,
Phys. Rev. B 49, 11729 (1994).

[9] D. J. Bergman and D. Stroud, Physical Properties of Macroscopically Inhomogeneous Media.
In: Solid State Physics, volume 46, p. 147.(Academic Press, Inc. 1992).

(10] F. Claro, R. Fuchs, Phys. Rev. B 44, 4109 (1991); K. Ghosh & R. Fuchs, Phys. Rev. B 38,
5222 (1988).

11] R. P. Devaty, Phys. Rev. B 44, 593 (1991).

12] F. Brouers, et al., Phys. Rev. B 49, 14582 (1994); 47, 666 (1993).

13 G. A. Niklasson, J. Appl. Phys. 62, R1 (1987).

14] V. A. Markel, L. S. Muratov, M. I. Stockman, and T. F. George, Phys. Rev. B 43, 8183
(1991 ), M. L. Stockman, et al., Phys. Rev. Lett. 72, 2486 (1994).

15] M. I. Stockman, T. F. George and V. M. Shala.ev Phys. Rev. B 44, 115 (1991).

16] V. M. Shalaev, R. Botet, and R. Jullien, Phys. Rev. B 44, 12216 (1991) 45, 7592(E) (1992).
17) V. M. Shalaev, R. Botet, A. V. Butenko, Phys. Rev. B 48, 48, 6662 (1993).

18] M. 1. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, Phys. Rev. B
486, 2821 (1992).

19] V. M. Shalaev, M. Moskovits, A. A. Golubentsev, and S. John, Physica A 191, 352 (1992).

20] V. M. Shalaev, R. Botet, Phys. Rev. B 50 (1994).

21] S. G. Rautian, V. P. Safonov, P. A. Chubakov, V. M. Shalaev, M. I. Stockman, Pis’ma Zh.
Eksp. Teor. Fiz. 47, 243 (1988) [JETP Lett. 47, 243 (1988)].

[22] A. V. Butenko, et al., Z. Phys. D Atoms, Molecules and Clusters, Nonlinear optics of metal
fractal clusters, 17, 283 (1990); A. V. Karpov, et al., Pis’ma Zh. Eksp. Teor. Fiz. 48, 528 (1988)
JETP Lett. 48, 571 (1988)).

23] V. M. Shalaev, M. 1. Stockman, & R. Botet, Physica A 185, 181 (1992).

24] D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. Suh, and R. Botet, Photon
STM Images of Optical Excitations of Fractal Metal Colloid Clusters, Phys.Rev.Lett. 72, 4149
(1994).

422





