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The paper deals with two channels of optical excitation of an infinite chromophore chain: two-
photon (step-wise) excitation and cooperative excitation (summation of energy of two closest
neighborsin one of them). Steady-state populations of the first and second excited electronic
states of the chromophores have been found The cooperative processes result in correlation of
chromophore electronic level populationsin achain. It istaken into account accurately. To
calculate the populations, the distribution function of state occupation numbers for an infinite
chain isfound and an analogy with the one-dimensional 1sing model is used. It is shown that the
cooperative processes can lead either to increase or to decrease in the population of the higher
electronic levels, depending on the excitation conditions. The theoretical results are verified by
numerical calculations.
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OPTICAL INFORMATION TECHNOLOGIES AND SYSTEMS

TWO-PHOTON AND COOPERATIVE EXCITATION OF AN INFINITE
CHROMOPHORE CHAIN

V.AMarkel
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The paper deals with two channels of optical excitation of an infinite chromophore chain:
two-photon (stepwise) excitation and cooperative excitation (summation of the energy of two
closest neighbors in one of them). Steady-state populatioas of the first and second excited
electronic states of the chromophores have been found. The cooperative processes result in a
correlation of chromophore populations in a chain. It is taken into account accurately. To
calculate the populations, a function of infinite chain distribution in states is found, and an
analogy with the one-dimensional Ising model is used. It is shown that the cooperative
processes may lead to an increase in the population of higher electronic levels as well as to its

decrease, depending on excitation conditions. The theoretical results are verified by numerical
simulation. 3 :

INTRODUCTION

Optical phenomena in chromophore molecules (dyes) are of a great varicty and interest (see, for instance,
[1-4]). The chromophore study is also important from an applied point of view because they are utilized as probes
and labels {35, 6], for macromolecule modification [7], in active laser media [8]-

The preseat paper is devoted to a theoretical description of the optical processes in an infinite linear
chromophore chain. The monomers which constitute the chain are assumed to be isolated (discernible) quantum
mechanically, however due to weak overlapping of electron clouds they can radiativelessly exchange an electron
excitation energy with the nearest neighbors in the chain. This exchange causes the cooperative processes. In
particular, the summation of the energy of two neighboring monomers in one of them (a cooperative excitation) is
a cooperative process. Another side of this process is nonlinear quenching (an energy loss by a monomer) by an
energy donor. Besides the process mentioned above, an excitation ene rgy migration along the chain is also possible.
It does not lead to a change in the populations of electron levels and thereby is not taken into account in the paper.

Photoprocesses in bichromophores, dyc dimers, were considered in [9, 10). The monomer population
correlation which appeared due to the energy exchange was taken accurately into account in these papers.
However, the mcthod of balance equations, which was applied in [9, 10] for description of the populations of
electronic levels of a bichromophore, cannot be extended to a chain because of a growing number of equations.
To overcome this difficulty, in the present paper we usc an analogy with the Ising model. The results obtained are
verified by numerical simulation.

Definition of the model. At first, let us consider an individual chromophore (hereafter we will call it a
monomer). As is well-known [11], in the complex organic molecules which are impurities in a condensed phase, a
rate of dephasing in electronic excited states is significantly higher than that of other relaxation processes. Hence,
taking also into account the quantum mechanical discernibility, one may conclude that the monomers are in certain
"pure” electronic states at any instant. Let us denote these states as S, i» where { is a level number.

The following processes proceed in a monomer. Firstly, radiative transitions with cross-sections oy
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For i > j, (1) describes a radiative excitation, for i < j, a stimulated emission. A differential probability that the 1+ ;. Prog

radiative transition (1) occurs in a time interval dt is oyldt, where I is an intensity of the exciting radiatio
Thercfore, the quantity oy I is a rate of the process described by (1). i .

We will assume, according to observed values, that the rates of relaxation via the vibrational sublevels [¥¥ . s - anot
are significantly higher than the rates of spontaneous relaxation of the electronic states I, That is why the electronic 40 jl. COng
states decay from the ground vibrational sublevels:

Ty &
.':}-S}. 1 <],

where Ty are partial rates and T = XT. Because of the condition I'fY >> T, the excitation of the higher
electronic levels occurs via the ground vibrational sublevels of the lower ones in stepwise processes of the (1) type:
So = 51 = 57 the two-photon (not stepwise) processes have a small probability in terms of the parameter I/T;, :
Hereafter we suppose that a photon energy is not so high that the topmost levels are populated bypassing the -
cascade, ie., in a one-quantum process. o
In complex chromophore molecules, a lifetime of the first singlet state I is of the order of 10™%-10"sec
while the higher excited states have lifetimes shorter than 10~ 2 sec, Therefore, one may demand that the excitation ; arbit
radiation intensity I be not so high as to saturate the second excited level but sufficient for saturating the first one:. & - i

I >>Ty, o, 1. 3

This allows us to restrict the consideration only to the first three electronic states: So 51, and Sz Note, that the )

rates of the photochemical conversions which can proceed only from the higher excited states (for instance, the - - . anml

reactions which are caused by the transfer of a two-quantum excitation cnergy [12, 13]) are proportional to the, . - inthe

population of the S; level; the fluorescence intensity is proportional to the population of S, RO L. Sist
Let us now proceed to the cooperative processes which are specific for a chromophore chain. They are ;

described by two rate constants. Firstly, if an ith monomer and one of its nearest neighbors are in the 5, state,

while the other nearest neighbor in the Se state, then the electron excitation energy can accumulate in the jth 1 Proc

monomer, with the latter moving to the S state and its neighbor, which is an encrgy donor, to So. Let us designate,

the rate of such a process by Si0/2: fraw k]
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Herc the upper indices number the monomers. The factor 12 is introduced because the encrgy may accumulate”
in both the ith monomer and its neighbor with an equal probability. The constant Sy is completely analogous to:
the constant Sy which was uscd in [9, 10] for a bichromophore description, =

Ifthe ith monomer and both its neighbors arc in the S state, then the energy summation i the ith monomer | witho
is described by the rate constant Sy according to : ——— obtai.
: B2 _ ' that a
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It is supposed here that the probability of the summation of the three-quantum energy in one monomer is low.
The energy conditions on 0-O-transition frequencies, which provide the proceeding of the cooperative
processes in the directions indicated in (4) and (5), at the same time prohibit the reverse processes.
Populations and reduced balance equations. Let us introduce the following notation. Let niyiy._ i,
(fx = 0, 1, 2) be a combined probability that m monomers, which constitute a chain fragment and follow one after
another, are in the states Sy, Si, ... Si,,, respectively. It follows from the properties of chain symmetry and the
condition of conservation of the number of particles that:

Piyiy by = iy by = 1—ipp g (6)

2
2 Ay, =Ll ™
i1y ey i = 0

For I <m the following relationship also takes place

My_iy= Y Miyiein ' ®

i+ 10— b

In particular, n; is an individual chromophore population which characterizes the probability that an
arbitrary monomer in the chain is in the §; state. The quantity 54 is a simultancous pair correlator and describes
the bichromophore states completely. In paper [9], which is devoted to bichromophores, a system of balance
equations for quantities 7y was obtained and solved, after which the populations n; were calculated according
to (8).

Let us now obtain the equations which describe the populations of energy levels of monomers constituting
an infinite chain. In this cass we will take into account condition (3) (see also [9]). Suppose that the monomer found
- inthe S; state returns instantancously cither with a probability 7, to the S state or with a probability , to the
S5 state, where ro and r; are branching coefficients:

r.-l‘u/'l':, l'1=-ru/rz, f.‘i"nﬂl. (9)

Proceeding from the balance of the processes (1), (2), (4), (5), and taking into account the above reasoning, we
will obtain in the steady state (for stationary excitation conditions):

dny/dt = =ny/Ty + ne/Te = (1 + 1) Brie tne = (1 + r0)(Br1y/ 2y = 0, (10)
dny/dt = =Tany + o2 Iny + Pronue + B/ = 0, (11)
Vrie=owl, Uti=2T+ (on+roon)l, . (12)

ne+m=1 n<<l. , (13)

Here we introduced the quantities 7o and 1, the lifetimes of an individual chromophore in the states So and S
without regard to the cooperative processes and also took into account that #130 = oy, Relationships (13) are
obtained from the condition of conservation of the number of particles (7) with regard to (3) and express the fact
that a monomer is almost always either in the Sy state or in the S, state.

System (10), (11) cannot be solved because it involves more unknown quantities than equations. However,
it allows one to obtain a very uscful relationship between 7, and n;. Really, since (10) and (11) involve
Aye and my in one and the same combination, we have

(14)
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x==rl/‘r°, K=

where the parameter x of saturation of the first level is introduced. As it follows from (12), with growing intensity
of the excitation radiation, x approaches the value Koy = ow/(Gn + reon). Usually, T'e <<T, in organic
chromophores, and, consequently, 7» << 1. As a rule, a nonzero value of 7, is explained by transfer of the energy
of two-quantum excitation of a chromophore to a surrounding medium (a solvent). Moreover, if the eXCitation jg
carricd out beyond the chromophore fluorescence band, than the cross-section of the stimulated emission is

Le., on <<0ow. Therefore, Kma may exceed unity significantly, Further all steady-state populations will be cop.
sidered as functions of «, while a dependence on the excitation radiation intensity 7 can be obtained with the aid
of (12) and (15); when I <<T'v/(0n + rs 021), we have & = oy, I/F) <<Kgun

It follows from (14) that the population nz of the higher excited state S, may lower as well as grow with
increasing rates of the cooperative processes. Since it is clear from the general considerations that the quantity
ny always decreases as a rate of the cooperative processes grows, the behavior of n; depends on the x/x, ratio,
When x > x,, the cooperative processes always lead to a decrease in a population of the Sy level; if x. > 0, then
there exists a range 0 < x < . in which the cooperative processes bring about an additional population of $,,
For x. > 0 all plots of the function nz(x), which arc obtained for different rates of the cooperative processes,
intersect at the point x = «..

The result obtained above is explained by the fact that for a sufficiently high intensity of excitation radiation
and, consequently, a value of x the radiative channel of populating the S: state is more efficient than the
cooperative one. Really, in the case of the cooperative population of S, a monomer which is an energy donor
moves to the So state and is thereby removed from all channels of populating S3; to excite it back to the first level
an additional time is nceded. A similar result was obtained for a bichromophore in [9]. Note, that formula (14) is
valid not only for a chain but for any regular structure with interaction of the nearest neighbors as well.

Relationship (14) allows one to simplify the problem and consider further a chain of two-level systems. Then,
with the cooperative excitation, as equations (10), (11) imply, the caergy donor moves to the S, state, while the
accepter remains with a probability 7y on the level S; and moves to S, with a probability 7,. Therefore, it suffices
to find a population n, ofthcﬁrstlcvclinthctwo-lmlmoddandthcntocxpress np in terms of n; and x
according to (14). In the approximation under consideration the quantity n; is small in terms of the parameter
V% 2 R

Thermodynamic analogies. A closed system of balance equations for a chain, which consists of A two-level
monomers, should involve 2" variables i, _iy (is = 0, 1) and the same number of equations. Solution of such a
system sccms to be an impracticable task. Instead of this we will use an analogy with the one-dimensional Ising
model

The difficulty in drawing this analogy consists in the fact that the radiation and chromophore system under
consideration is not at thermodynamic equilibrium, and, consequently, the introduction of temperature is not
legitimate. In other words, in the general case we cannot find such a constant T which would yield a correct
distribution for all possible values of the energy ¢ in the expression for a distribution function f~exp(—¢/T).In

this case ¢ may be considered as a function of a set of indices (i1, - in). However, the stationary character of the
problem allows onc to choose the function £(iy, ..., i), which will no longer have a meaning of energy, so that the
kinetic cocfficients found from the distribution function correspond exactly to the kinetic coefficients in balance
cquations of the (10), (11) type. Then exp(—e/T) will be a correct function of chain distribution in the
configurations (iy, ..., i), and with its aid, one will be able to calculate the populations, |
Each monomer may be in one of two states: Sy or Sy, and the probability of a transition from one state to
the other depends, as well as in the Ising model, on an external paramecter (an intensity of excitation radiation), an
initial state of the monomer, and a state of the nearest neighbors. Therefore, we will seek ¢ in the form
¢ = N1 E + NyA, where N is the number of monomers in the S state; Ny is the number of pairs of the nearest
ncighbors in the Sy state; £ and A are some coefficients ("thermodynamic variables™). .
Below we will find the relation between optical and thermodynamic variables, using a monomer, a dimer,
and a trimer as examples (the relation between the thermodynamic variables and the probabilities of transitions

Un/(l + h) i {71" ~ 24 (15)
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between possible states of a system in the Ising model is described, for instance, in [14]). Here by the optical
variables are mcant the quantities 7o, 71, f110, and fin; the steady-state populations depend only on three dimen-
sionless combinations of these quantities: x = 71/7s, 718110, 71 Sus. There are merely two independent dimension-
less combinations of the thermodynamic quantities: E/T, A/T, where T is an effective temperature. Since there
are one less independent thermodynamic variables, the quantities Sy and By are not independent (they both
are expressed in terms of one and the same thermodynamic variable A).

Monomer. At first, let us consider a two-level system (a monomer isolated from other monomers) in a
thermostat at temperature T. Let the degrees of degeneracy of the ground and first excited states be 8o and gy,
respectively. We will reckon the energy from the ground state and assume that the energy of the first excited level
is E, Then the canonical statistical sum Z; has the form

Z, = g0 + g1 exp(~E/T). (16)
For the average energy (&) of the two-level system we have
- 1dIn(Zy) _ Kr an
<£) ? daT E 1+ xr'
Kr = g.—lcxp(—E/T). a8

A thermodynamic saturation parameter xr is introduced in (17), (18). The population n; of the first level is
expressed according to

ny = (e)/E = x1/(1 + &7). (19)

+ Let us now obtain an expression for n; in terms of optical variables. The balance equations for the
chromophore which is not included in a chain have the form :

dm/dt =ny/ty = m/1, =20, ng+n =1, (20)
whence it follows:

ny = x/(1 + x). (21)

Since formulas (19) and (21) must lead to the same result, we assume & = xr. Therefore, the first cquation which
relates the thermodynamic and optical variables is obtained:

(22)

Dimer and trimer. We now turn to a relationship for the rate constant Sy With this aim in view, we will
consider a dimer (a bichromophore). The latter may be in one of the four states: (S 53), (515 8), (55 51) or (S15Y).
Suppose that the latter state has an additional energy A. Whence we find the statistical sum Zs: '

\

Z, = g5 + 280 81 exp(—E/T) + g1 exp(—(E + A)/T), ()
and also the average cnergy and the population ny of the bichromophore:

1 dIn(Zy)  2Exr + (2E + A3/B (29)
=2Em+ Ay == =
e} = 2B+ Anigm 2= 1+ 2r + x2/B
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g k{1l + Kr/B)

1+ 2%, +x;/B’

B = exp (A/T).

form [9]
dnow/dt = —~2nw/Ty + 2110/T) +1oBreny = 0, (27)

dnw/dt = —(L/te + L/Ty}1e + nee/To + nu/51 + 1y B/ 2)nyy = 0, (28
dny/dt = ~210/1) + 219/Ty = Pragny = 0, (20
Ne=rw+rme M=ny+nme ne+n =1 (3b i
The solution to system (27)—(30) was obtained in [9]: .

k(1 +x/(1 + 7, B110/2))
142 +x°/(1+1,fu0/2)

The equation relating Sue with A/T follows from the comparison of (25), (26), and (31): ,
1+ 1, 81s/2 = exp(A/T) = B. (32.).-_..-

five monomers. ' . 4

Note, that formulas (22), (32), and (33) are not a trivial substitution of variables because they allow one to
express the distribution function f ~ exp(=N1 E/T — NuA/T) in terms of the optical variables,

Let us preseat some results which follow from (22), (32), and (33). At first, we will find the relation between
the variable E/T which describes the interaction between chromophores and radiation, and an intensity I of the
excitation radiation. Assuming that g,/g, = 0,0/ (0ar + ro om), we will obtain from (22) §

| S P b ey EE (39
B h[1+(0u +Fed':.1)1] 1~ (On + o)l es 308

As it was noted already, the quantities By, and By are not independent. It follows from relationships (32), ; s
(33) that 1

. fm (35

nfn-0

B = Shapnid =
i 12 % U
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Formula (35) imposes a restriction on Sy and By However, one may demand that these quantities be inde-
pendent. To do this, one should introduce instead of one thermodynamic variable A two variables: A; and A,
which characterize the monomer interaction with one and two neighbors. Here A; = 2Ay; in this case A;and A,
are governed by arbitrarily defined S110 and Sy, However, such a statement of the problem leads to considerable
complications in calculating the statistical sum (sec Appendix) and will not be considered.

Calculation of populations for an infinite chain. Now we will calculate the level populations for an infinite
chain, and using relationships (22), (32), and (32), express them in terms of the optical variables. Below we will
apply the conventional procedure for calculating a statistical sum, which was first used by Ising [15, 16].

Let us consider an infinite chain as a limit for the chain consisting of N' monomers with N = @, For the sake
of simplicity, we will speak about a sequence of N zeros and unities, with the S, state corresponding to zero while
St to unity. Let us introduce the following notation. Let Ny and Ny be the numbers of zeros and unities in the
sequence; Ny, Noi, N1y, the numbers of pairs of the nearest neighbors corresponding to the lower indices;
N = N1 + Now Thus, for instance, for the sequence

0010100111011,

N=13,Ny=6,N1=T7,Nyo=3 N =4,Ny=3, and N3} = 7. The normalization condition has the form
No + Ny = N;; besides, odd N (as in the above example) satisfy the relationship N = Ny + (Vi + 1)/2;
Ny = Ny + Ni/2 isvalid for even N3, In the limit N ~ @ one may not distinguish between even and odd N
and use the latter formula, neglecting the addend 1/2. For the energy of a configuration with given N; Ny and
£(N1, Nu) we have

e(Ny, Nuj) = N\ E + NpA = Ny(E + A) — NpA/2, (36)

Let us write the statistical sum Zy in the following way:
(37

N
Zy= 3 }; g VN, Ny N exp [~ (Vi(E + A) - NwA/2)/T),
Niy=0 N

where v is the number of configurations with given N; and N7.

For the sake of definiteness, let Nis be an odd number. It is easy to verify that in this case the whole chain
is divided into L = (N3 + 1)/2 groups of zeros and the same number of groups of unities, each containing at least
one zero or unity. In particular, the sequence, given above as an example, is divided into groups in the following
way:

00|1[0|1]00]|111]0]11.

It can be scen that altogether there are Ny + 1 = 8 groups, including L = 4 groups of zeros and L groups of
unitics, For large &, as it was already noted above, one may not distinguish even and odd N3 and assume that
L =Ni/2.

Therefore, the problem of calculating the function »(N, Ny, Ni%) is reduced to a combinatorial problem of
distributing N'— Ny zeros in L groups and N unities also in L groups. One important point to remember is that
each group should contain at least one zero (or unity). In fact, N — Ny — L unities should be placed in L groups
(including 0 unities in a group), and zeros in a similar way, It is self-evident that to find v, one should multiply the
numbers of arrangements of zeros and unities, Finally we have:

Ny ! (N=Ny! (38)
[(No/2) | F(N = Ny L (N = Ny = Ny U

V(N,N:,N;) =2
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The factor 2 emerges because of the symmetry of the chain with respect to the "start-for-end” substitution (
formula (6)). ; : LETEL
To calculate the average (equilibrium) energy (e) of the chain, one should compute 1nZ,, Introducing the

notation Q = g" ™" g" yexp(—e/T), we write
InZy = InZQ(N, Ny, Nio) = 10QuadN, Ny, N33),

Quu(N, Ny, Ni3) = Q(N, Ny, N3,
where ﬁ;, N7 are the values of Ny, Nij with which the maximum value of Q is reached. Finally, we find Se):
(€) = T™d In(Quu)/dT = NA(E + A) = N5A/2, o2 (40)
whence (comparing with (36)), |

n = ﬁv"N, ni =ny + An = 2159 = Np/N. . (41)

It remains to find Ny, N3 which are defined by the condition Q(N, Ny, Ni) = max. To do this, we set the
derivatives 9lnQ/aN; and 3lnQ/6N3 equal to zero. In calculating lov, we will use the Stirling formula and drop
all the terms which are less than NV in the order of magnitude. Finally, we obtain the following system (let us
write it immediately in terms of the variables Ry Rp= nf&f’Z): VL

(1 = 1y = ny,) =X (42)
A=n)m—nw "B’

(m = mo)(1 =y — nyy) o (43)

ﬂfe B’

Relationship (22) x = k7 was used in (42). The relation between B and the rates Buo and By is given by (32)

and (33). :
The solution to system (42), (43) for ny has the form . .
1 x/B-1 T(44)
AT {1 Y Vet wr-17 } 2o

The population n; of the higher singlet level is related with n, by (14). Let us also write the solution for
the reduced correlator K = (nyy — nj)/nk:

o B |[Vac+@B~1 —x/BF _1 : - (45)
:-—-B_-I k i 5

Let us discuss the obtained results (44), (45). In the case of the absence of the cooperative processes.
(B = 1), (44) is transformed into (21). An increase in the rate of the cooperative processes always leads toa =

decrease in the population of the Sy level (n decreases). As it is seen from the comparison with the results I_9I
for a bichromophore (formulas (25), (31)), the cooperative processes play a more significant role in the chain
especially at high saturation. The population 71, lowers in passing from the dimer to the chain, As for the population
Ny, according to (14) its value decreases in passing from the dimer to the chain if x > x,, and it increases if
Kk < k.. Below, some asymptotics for ny, 7, and X are presented for the chain and the bichromophore; the results
for the chain are marked with the upper index ch while for the bichromophore — with bic.
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a)x <<0:

R Ty

ny=xk[1-x(3~-2B)], ni"=x[1-x(2-L1B)]

. K'(Ux, +3 = 2/B) e £ (U/x, +2 - 1/B)
* {l+r) ' Tl +r) '

K* =K"= -B/(B-1);

b)x >>1;
nf"ui—Bz/x, n:i'sl—B/n:,
o K[1+Vk~(1+B/6)/k] wu x[1+ Ve —(1+B/c)/x]
b i T:1 +rp) b e Tl +r) ’
K*= -B'(B - 1)/x’, K™= <B(B - 1)/x";
c)B>>1 -

= (1=-UY1+4)/2, n =x/(1+2),
K*=—1+V1+4&/B,

K™= —1+ (1 +2)/B.

The plots of the function 2,(x) for the chain and the dimer are presented in the figure.

Numerical simulation. The result (44) was verified by numerical simulation. A chain of 100 two-level
monomers with periodical boundary conditions was used. Probabilities of the transitions were calculated according
to schemes (1), (3), (4), and (5). All times (74, ;) Were measured in units of a certain discrete step which was
selected so that the probability of the transition of each particular monomer from one state to another is sufficiently
low at a given step. The value of ; was calculated by the monomer and time averaging over the intervals which
were much longer than all characteristic times of the system, i.e., under statistical equilibration.

1.0

Bl - e g T ;] B=2

05 - o s }B=1{
0

e

0 2 4 6 8 10 12

Population n; of the first excited state as a function of saturation parameter x for

different rates of cooperative processes: the solid line is the result of calculations

by formula (44) for the infinite chain; the dashed - by formula (25) for the dimer;
the circles are the results of numerical calculations for the infinite chain.

0.0
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Numerical and theoretical results for the function ni(x) are shown in the figure. As it is seen from the ﬁgm-g,ff
the agreement is very good. The small fixed deviation for B = 10 is attributed to the finiteness of the chain. The .-
good agreement between the numerical and analytical results is an indirect confirmation of the legitimacy of thett
use of the distribution function f ~exp(—=NiE/T ~ NuA/T) with the parameters £/T and A/T defined by -

(22), (32), and (33).
APPENDIX gl

If we seck for ¢ in the form & = ME + Ny Ay + Nii Ay, then the quantities Buo and Buy will be inde
pendent. In this case the relation between the variables has the form

1+ ﬁllﬂfz = cxp(Al/D = Bl, 1 +ﬁ1n/2 = Q@(Az/n = E‘z
and the following system of three equations is obtained instead of (42) and (43):

(1 = my)(1 = ny — nyg) - B: (1 =n1—nw)(m —np = )
(A =nm)(m—nw—ny) K’ (1 = n1o)(M10 — 1)

B.,

2
(110 — n110) (1 — 710 — M1x0) _B

ﬂfm B2 N

Although the solution of this system is not a difficult mathematical problem, it is very cumbersome and, besides,
the rate of the cooperative processes is governed in it by two independent variables rather than one as it is in the sidsts
solution (44). : %
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